Obrabotka Metallov 2024 Vol. 26 No. 4

OBRABOTKAMETALLOV Vol. 26 No. 4 2024 177 MATERIAL SCIENCE 40. Xue L., Ding Y., Pradeep K., Case R., Castaneda H., Paredes M. The grain size eff ect on corrosion property of Al2Cr5Cu5Fe53Ni35 high-entropy alloy in marine environment. Corrosion Science, 2022, vol. 208. DOI: 10.1016/j. corsci.2022.110625. 41. Zou Y., Li S., Liu S., Li J., Li Y. Improved mechanical and corrosion properties of CrMnFeCoNi high entropy alloy with cold rolling and post deformation annealing process. Journal of Alloys and Compounds, 2021, vol. 887. DOI: 10.1016/j.jallcom.2021.161416. 42. Li N., Zhang H., Wu L., Li Z., Fu H., Ni D., Xue P., Liu F., Xiao B., Ma Z. Simultaneously increasing mechanical and corrosion properties in CoCrFeNiCu high entropy alloy via friction stir processing with an improved hemispherical convex tool. Materials Characterization, 2023, vol. 203. DOI: 10.1016/j.matchar.2023.113143. 43. Zhang W.-R., Liao W.-B., Liaw P.K., Ren J.-L., Brechtl J., Zhang Y. Eff ects of transient thermal shock on the microstructures and corrosion properties of a reduced activation high-entropy alloy. Journal of Alloys and Compounds, 2022, vol. 918. DOI: 10.1016/j.jallcom.2022.165762. 44. Xiong W., Guo A.X., Zhan S., Liu C.T., Cao S.C. Refractory high-entropy alloys: a focused review of preparation methods and properties. Journal of Materials Science & Technology, 2023, vol. 142, pp. 196–215. DOI: 10.1016/j.jmst.2022.08.046. 45. Haché M.J., Zou Y., Erb U. Thermal stability of electrodeposited nanostructured high-entropy alloys. Surface and Coatings Technology, 2024, vol. 474, p. 130719. DOI: 10.1016/j.surfcoat.2024.130719. 46. ShivamV., Shadangi Y., Basu J., Mukhopadhyay N.K.Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy. Journal of Materials Research, 2019, vol. 34, pp. 787–795. DOI: 10.1557/jmr.2019.5. 47. Shahmir H., Nili-Ahmadabadi M., Shafi e A., Langdon T. Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi high-entropy alloy processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2017, vol. 194. DOI: 10.1088/1757-899X/194/1/012017. 48. BazlovA.I., Strochko I.V., ZanaevaE.N., UbivovkaE.V., ParkhomenkoM.S.,MilkovaD.A., BryukhanovaV.V. Eff ect of replacing molybdenum with vanadium on the tendency to amorphization, structure and thermophysical properties of high-entropy alloys of the Fe–Co-Ni–Cr–(Mo,V) system. Metallurgist, 2024, vol. 67, pp. 1695– 1704. DOI: 10.1007/s11015-024-01664-y. Translated from Metallurg, 2023, no. 11, pp. 86–92. DOI: 10.52351/ 00260827_2023_11_86. 49. Sun H., Liu T., Oka H., Hashimoto N., Cao Y., Luo R. Role of aging temperature on thermal stability of Cofree Cr0.8FeMn1.3Ni1.3 high-entropy alloy: decomposition and embrittlement at intermediate temperatures. Materials Characterization, 2024, vol. 210, p. 113804. DOI: 10.1016/j.matchar.2024.113804. 50. Liu X., Bai Z., Ding X., Yao J., Wang L., Su Y., Fan Z., Guo J. A novel lightweight refractory high-entropy alloy with high specifi c strength and intrinsic deformability. Materials Letters, 2020, vol. 287, p. 129255. DOI: 10.1016/j.matlet.2020.129255. 51. Wei Q., Luo G., Tu R., Zhang J., Shen Q., Cui Y., Gui Y., Chiba A. High-temperature ultra-strength of dualphase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite. Journal of Materials Science & Technology, 2021, vol. 84, pp. 1–9. DOI: 10.1016/j.jmst.2020.12.015. 52. Zhang H., Cai J., Geng J., Sun X., Zhao Y., Guo X., Li D. Development of high strength high plasticity refractory high entropy alloy based on Mo element optimization and advanced forming process. International Journal of Refractory Metals and Hard Materials, 2023, vol. 112. DOI: 10.1016/j.ijrmhm.2023.106163. 53. Panina E.S., Yurchenko N.Yu., Tozhibaev A., Zherebtsov S.V., Stepanov N.D. [High-entropy alloy based on the Co-Mo-Nb-Hf system with high strength at 1000 °C]. Materialovedenie, formoobrazuyushchie tekhnologii i oborudovanie 2022 (ICMSSTE 2022) [Materials Science, Shaping Technologies and Equipment 2022 (ICMSSTE 2022)]. Proceedings of the International Scientifi c and Practical Conference. Simferopol, 2022, pp. 128–134. (In Russian). 54. Pan Q., Zhang L., Feng R., Lu Q., An K., Chuang A.C., Poplawsky J.D., Liaw P.K., Lu L. Gradient cellstructured high-entropy alloy with exceptional strength and ductility. Science, 2021, vol. 374, pp. 984–989. DOI: 10.1126/science.abj8114. 55. Zhang B., Chen J., Wang P., Sun B., Cao Y. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique. Journal of Materials Science & Technology, 2021, vol. 111, pp. 111–119. DOI: 10.1016/j.jmst.2021.09.043. 56. Chen Y., Fang Y., Wang R., Tang Y., Bai S., Yu Q. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity. Journal of Materials Science & Technology, 2023, vol. 141, pp. 149–154. DOI: 10.1016/j.jmst.2022.09.018.

RkJQdWJsaXNoZXIy MTk0ODM1