OBRABOTKAMETALLOV Vol. 26 No. 4 2024 178 MATERIAL SCIENCE 57. Cai J., Zhang H., Wang L., Sun X., Xu X., Guo X., Li D. Design and coherent strengthening of ultra-high strength refractory high entropy alloys based on laser additive manufacturing. SSRN Electronic Journal, 2023. DOI: 10.2139/ssrn.4469753. 58. Jiang D., Xie L., Wang L. Current application status of multi-scale simulation and machine learning in research on high-entropy alloys. Journal of Materials Research and Technology, 2023, vol. 26, p. 1341. DOI: 10.1016/j. jmrt.2023.07.233. 59. Gromov В.Е., Konovalov С.В., Chen C., Efi mov М.О., Panchenko И.А., Shlyarov В.В. Development vector for enhancement of Cantor HEA properties. Vestnik Sibirskogo gosudarstvennogo industrial’nogo universiteta = Bulletin of the Siberian State Industrial University, 2023, no. 2 (44), pp. 3–12. DOI: 10.57070/23044497-2023-2(44)-3-12. (In Russian). 60. Klimenko D., Stepanov N., Li J., Fang Q., Zherebtsov S. Machine learning-based strength prediction for refractory high-entropy alloys of the Al-Cr-Nb-Ti-V-Zr system. Materials, 2021, vol. 14, p. 7213. DOI: 10.3390/ ma14237213. 61. Bhandari U., Rafi R., Zhang C., Yang S. Yield strength prediction of high-entropy alloys using machine learning. Materials Today Communications, 2020, vol. 26, p. 101871. DOI: 10.1016/j.mtcomm.2020.101871. 62. Klimenko D.N., Yurchenko N.Y., Stepanov N.D., Zherebtsov S.V. Prediction of strength characteristics of high-entropy alloysAl-Cr-Nb-Ti-V-Zr systems. Materials Today: Proceedings, 2021, vol. 38, p. 1535. DOI: 10.1016/j. matpr.2020.08.145. 63. Li J., Fang Q. Investigation into plastic deformation and machining-induced subsurface damage of high-entropy alloys. Simulation and Experiments of Material-Oriented Ultra-Precision Machining. Springer, 2019, pp. 23– 52. DOI: 10.1007/978-981-13-3335-4_2. 64. Wu C., Li J., Qiu W., Lian F., Huang L., Zhu J., Chen L. Plasticity of CrMnFeCoNi high-entropy alloy via a purifi cation mechanism. SSRN Electronic Journal, 2023. DOI: 10.2139/ssrn.4415770. 65. Hao J., Zhang Y., Wang Q., Ma Y., Sun L., Zhang Z. Enhanced plasticity in a Zr-Rich refractory high-entropy alloy via electron irradiation. Journal of Nuclear Materials, 2023, vol. 590. DOI: 10.1016/j.jnucmat.2023.154876. 66. Li H., Cao F., Li T., Tan Y., Chen Y., Wang H., Liaw P.K., Dai L. Enhanced plasticity in refractory highentropy alloy via multicomponent ceramic nanoparticle. Journal of Materials Science & Technology, 2024, vol. 194, pp. 51–62. DOI: 10.1016/j.jmst.2024.01.030. 67. Chen Y.-Y., Hung S.-B., Wang C.-J., Wei W.-C., Lee J.-W. High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin fi lms. Surface and Coatings Technology, 2019, vol. 375, pp. 854–863. DOI: 10.1016/j.surfcoat.2019.07.080. 68. Nong Z., Zhu J., Yang X., Yu H., Lai Z. Eff ects of annealing on microstructure, mechanical and electrical properties of AlCrCuFeMnTi high entropy alloy. Journal of Wuhan University of Technology – Materials Science Edition, 2013, vol. 28, pp. 1196–1200. DOI: 10.1007/s11595-013-0844-9. 69. Uporov S., Ryltsev R., Sidorov V., Estemirova S.K., Sterkhov E., Balyakin I., Chtchelkatchev N. Pressure eff ects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy. Intermetallics, 2022, vol. 140. DOI: 10.1016/j.intermet.2021.107394. 70. Xie J., Zhang S., Sun Y., Hao Y., An B., Li Q., Wang C.A. Microstructure and mechanical properties of high entropy CrMnFeCoNi alloy processed by electropulsing-assisted ultrasonic surface rolling. Materials Science and Engineering: A, 2020, vol. 795, p. 140004. DOI: 10.1016/j.msea.2020.140004. 71. Karimi M., Shamanian M., Enayati M., Adamzadeh M., Imani M. Fabrication of a novel magnetic high entropy alloy with desirable mechanical properties by mechanical alloying and spark plasma sintering. Journal of Manufacturing Processes, 2022, vol. 84, pp. 859–870. DOI: 10.1016/j.jmapro.2022.10.048. 72. Siddiqui D.N., Mehboob N., Zaman A., Alsuhaibani A.M., Algahtani A., Tirth V., Alharthi S., Al-Shaalan N.H., Amin M.A. Eff ect of Cr-doping on the structural and magnetic properties of mechanically alloyed FeCoNiAlMnCr high-entropy alloy powder. ACS Omega, 2023, vol. 8, p. 19892. DOI: 10.1021/acsomega.3c01823. 73. Dong Z., Huang S., Ström V., Chai G., Varga L.K., Eriksson O., Vitos L. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature. Journal of Materials Science & Technology, 2021, vol. 79, pp. 15–20. DOI: 10.1016/j.jmst.2020.10.071. 74. Gromov V.E., Shlyarova Y.A., Konovalov S.V., Vorob’ev S.V., Peregudov O.A. Application of high-entropy alloys. Izvestiya Ferrous Metallurgy, 2021, vol. 64, p. 747. DOI: 10.17073/0368-0797-2021-10-747-754. 75. Suleimanova I.I., Ivanov M.A., TingaevA.K., Trofi mov E.A. [Prospects for application of high-entropy alloys for engineering at cryogenic temperatures]. Sbornik trudov X Evraziiskogo simpoziuma po problemam prochnosti i resursa v usloviyakh klimaticheski nizkikh temperatur, posvyashchennyi 100-letiyu obrazovaniya YaASSR i 300-letiyu
RkJQdWJsaXNoZXIy MTk0ODM1