Obrabotka Metallov 2024 Vol. 26 No. 4

OBRABOTKAMETALLOV Vol. 26 No. 4 2024 39 TECHNOLOGY 2. Gibson I., Rosen D., Stucker B. Direct digital manufacturing. Additive Manufacturing Technologies. 2nd ed. New York, Springer, 2015, pp. 375–397. DOI: 10.1007/978-1-4939-2113-3_16. 3. Patil N.A., Njuguna J., Kandasubramanian B. UHMWPE for biomedical applications: performance and functionalization. European Polymer Journal, 2020, vol. 125, p. 09529. DOI: 10.1016/j.eurpolymj.2020.109529. 4. Kurtz S.M. Primer on UHMWPE. UHMWPE biomaterials handbook: ultra-high molecular weight polyethylene in total joint replacement and medical. 3rd ed. Amsterdam, Elsevier, 2016, pp. 1–6. 5. Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials, 2001, vol. 22 (4), pp. 371–401. DOI: 10.1016/S0142-9612(00)00195-2. 6. Wang A., Essner A., Polineni V., Stark C., Dumbleton J. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements. Tribology International, 1998, vol. 31, pp. 17–33. DOI: 10.1016/S0301679X (98)00005-X. 7. Yousuf J.M., Mohsin A.A. Enhancing wear rate of high-density polyethylene (HDPE) by adding ceramic particles to propose an option for artifi cial hip joint liner. IOP Conference Series: Materials Science and Engineering, 2019, vol. 561, p. 012071. DOI: 10.1088/1757-899X/561/1/012071. 8. Orishimo K.F., Claus A.M., Sychterz C.J., Engh C.A. Relationship between polyethylene wear and osteolysis in hips with a second-generation porous-coated cementless cup after seven years of follow-up. The Journal of Bone & Joint Surgery, 2003, vol. 85 (6), pp. 1095–1099. DOI: 10.2106/00004623-200306000-00018. 9. Nabhan A., Sherif G., Abouzeid R., Taha M. Mechanical and tribological performance of HDPE matrix reinforced by hybrid Gr/TiO2 NPs for hip joint replacement. Journal of Functional Biomaterials, 2023, vol. 14 (3), p. 140. DOI: 10.3390/jfb14030140. 10. Zhang X., Zhang T., Chen K., Xu H., Feng C., Zhang D. Wear mechanism and debris analysis of PEEK as an alternative to CoCrMo in the femoral component of total knee replacement. Friction, 2023, vol. 11, pp. 1845–1861. DOI: 10.1007/s40544-022-0700-z. 11. Tol M.C.J.M., Willigenburg N.W., Rasker A.J., Willems H.C., Gosens T., Heetveld M., Schotanus M.G.M., Eggen B., Kormos M., Pas S.L. van der, Vaart A. van der, Goslings J.C., Poolman R.W. Posterolateral or direct lateral surgical approach for hemiarthroplasty after a hip fracture: a randomized clinical trial alongside a natural experiment. JAMA Network Open, 2024, vol. 7 (1), p. e2350765. DOI: 10.1001/jamanetworkopen.2023.50765. 12. Obinna O., Stachurek I., Kandasubramanian B., Njuguna J. 3D printing for hip implant applications: a review. Polymers (Basel), 2020, vol. 12 (11), p. 2682. DOI: 10.3390/polym12112682. 13. Bhagia S., Bornani K., Agarwal R., Satlewal A., Ďurkovič J., Lagaňa R., Bhagia M., Yoo C.G., Zhao X., Kunc V., Pu Y., Ozcan S., Ragauskas A.J. Critical review of FDM 3D printing of PLA biocomposites fi lled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefi neries. AppliedMaterials Today, 2021, vol. 24, p. 101078. DOI: 10.1016/j.apmt.2021.101078. 14. Anerao P., Kulkarni A., Munde Y., Shinde A., Das O. Biochar reinforced PLA composite for fused deposition modelling (FDM): a parametric study on mechanical performance. Composites, Part C: Open Access, 2023, vol. 12, p. 100406. DOI: 10.1016/j.jcomc.2023.100406. 15. Gosavi A., Kulkarni A., Dama Y., Deshpande A., Jogi B. Comparative analysis of drop impact resistance for diff erent polymer based materials used for hearing aid casing. Materials Today: Proceedings, 2022, vol. 49, pp. 2433–2441. DOI: 10.1016/j.matpr.2021.09.519. 16. Dama Y.B., Jogi B.F., Pawade R.S. Application of nonlinear analysis in evaluating additive manufacturing process for engineering design features: a study and recommendations. Communications on Applied Nonlinear Analysis, 2024, vol. 31 (1s), pp. 94–105. DOI: 10.52783/cana.v31.559. 17. Daly M., Tarfaoui M., Chihi M., Bouraoui C. FDM technology and the eff ect of printing parameters on the tensile strength of ABS parts. The International Journal of Advanced Manufacturing Technology, 2023, vol. 126 (11– 12), pp. 5307–5323. DOI: 10.1007/s00170-023-11486-y. 18. Sandanamsamy L., Mogan J., Rajan K., HarunW.S.W., Ishak I., Romlay F.R.M., Samykano M., Kadirgama K. Eff ect of process parameter on tensile properties of FDM printed PLA. Materials Today: Proceedings, 2023. DOI: 10.1016/j.matpr.2023.03.217. 19. Eryildiz M. Eff ect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: an experimental investigation. European Mechanical Science, 2021, vol. 5 (3), pp. 116–120. DOI: 10.26701/ ems.881254. 20. Chacón J.M., Caminero M.A., García-Plaza E., Núñez P.J. Additive manufacturing of PLA structures using fused deposition modelling: eff ect of process parameters on mechanical properties and their optimal selection. Materials & Design, 2017, vol. 124, pp. 143–157. DOI: 10.1016/j.matdes.2017.03.065.

RkJQdWJsaXNoZXIy MTk0ODM1