OBRABOTKAMETALLOV Vol. 27 No. 1 2025 104 EQUIPMENT. INSTRUMENTS 2. Lobanov D.V., Arkhipov P.V., Yanyushkin A.S., Skeeba V.Yu. The research into the eff ect of conditions of combined electric powered diamond processing on cutting power. Key Engineering Materials, 2017, vol. 736, pp. 81–85. DOI: 10.4028/www.scientifi c.net/KEM.736.81. 3. Bratan S.M., Kharchenko A.O., Vladetskaya E.A., Kharchenko A.A. Analysis and synthesis of vibration isolation system of a grinding machine with account of the operational reliability of its elements. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 1, pp. 35–49. DOI: 10.17212/1994-6309-2019-21.1-35-49. (In Russian). 4. Kharchenko A., Chasovitina A., Bratan S. Modeling of regularities of change in profi le sizes and wear areas of abrasive wheel grains during grinding. Materials Today: Proceedings, 2021, vol. 38 (4), pp. 2088–2091. DOI: 10.1016/j.matpr.2020.10.154. 5. Nosenko S.V., Nosenko V.A., Kremenetskii L.L. The condition of machined surface of titanium alloy in dry grinding. International Conference on Industrial Engineering, ICIE 2017, Saint-Petersburg, 16–19 May 2017, pp. 115–120. DOI: 10.1016/j.proeng.2017.10.446. 6. Gusev V.V., Roshchupkin S.I., Moiseev D.A., Melnikova E.P. Analysis of grinding process with the use of fi eld theory. IOPConference Series: Materials Science and Engineering, 2019, vol. 709 (2), p. 022001. DOI: 10.1088/1757899X/709/2/022001. 7. Rechenko D.S. The study of the process of diffi cult-to-machine materials cutting at the micro-level. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 2, pp. 18–25. DOI: 10.17212/1994-6309-2019-21.2-18-25. (In Russian). 8. Rechenko D.S., Popov A.Y., Titov Y.V., Balova D.G., Gritsenko B.P. Ultra-high-speed sharpening and hardening the coating of carbide metal-cutting tools for fi nishing aircraft parts made of titanium alloys. Journal of Physics: Conference Series, 2019, vol. 1260 (6), p. 062020. DOI: 10.1088/1742-6596/1260/6/062020. 9. Kozlov A.M., Kozlov A.A. Shaping the surface topology of cylindrical components by means of an abrasive tool. Russian Engineering Research, 2009, vol. 29 (7), pp. 743–746. DOI: 10.3103/S1068798X09070223. 10. Soler Ya.I., Kazimirov Yu.D. Predicting the supporting area of microrelief in machine parts of variable rigidity during plane grinding. Journal of Machinery Manufacture and Reliability, 2006, vol. 35 (3), pp. 260–265. 11. Niu L., Jin Z., Zhou Z., Dong Z., Zhu X. Study on electrochemical eff ect in electrochemical grinding of tungsten alloy. ISAAT 2018 – 21st International Symposium on Advances in Abrasive Technology, Toronto, 14– 16 October 2018. 12. Bratan S.M., Sidorov D.E., Bogutskii V.B. [Synthesis of a Kalman-Bussy fi lter for assessing the state of a grinding operation]. Sovremennye napravleniya i perspektivy razvitiya tekhnologii obrabotki i oborudovaniya v mashinostroenii [Modern directions and prospects for the development of processing technologies and equipment in mechanical engineering]. Materials of the International Scientifi c and technical conference, Sevastopol, September 14–15, 2015, pp. 87–91. (In Russian). 13. Nosenko V.A., Belukhin R.A., Fetisov A.V., Morozova L.K. Ispytatel’nyi kompleks na baze pretsizionnogo profi leshlifoval’nogo stanka s ChPU CHEVALIER modeli smart-B1224 III [Test complex based on a precision CNC profi le grinding machine CHEVALIER model smart-B1224 III]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta = Izvestia of Volgograd State Technical University, 2016, no. 5 (184), pp. 35–39. 14. Gusev V.V., Moiseev D.A. Otsenka parametrov rabochei poverkhnosti almaznogo shlifoval’nogo kruga [Estimation of parameters of the working surface of a diamond grinding wheel]. Progressivnye tekhnologii i sistemy mashinostroeniya = Progressive Technologies and Systems of Mechanical Engineering, 2017, no. 4 (59), pp. 11–17. 15. Makarov V.F., Nikitin S.P. Povyshenie eff ektivnosti profi l’nogo glubinnogo shlifovaniya lopatok turbin na mnogokoordinatnykh stankakh s ChPU [Increasing the effi ciency of profi le deep-depth grinding of turbine blades on multi-axis CNC machines]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2018, no. 4 (82), pp. 21–29. 16. Makarov V.F., Zhukotsky V.A., Bychina E.N. Problemy avtomatizatsii fi nishnoi obrabotki slozhnoprofi l’nykh poverkhnostei lopatok GTD [Problems of automation of fi nishing processing of diffi cult profi le surfaces of blades GTE]. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = News of Tula State University. Technical Sciences, 2016, no. 8-2, pp. 52–55. 17. Yanyushkin A.S., Popov V.Yu., Sur’ev A.A., Yanpol’skii V.V. Prisposoblenie dlya izmereniya malykh sil pri elektroalmaznom shlifovanii [Device for measuring small forces during electric diamond grinding]. Patent RF, no. 2215641 C2, 2003. 18. Yanyushkin A.S., Popov V.Yu., Sur’ev A.A., Yanpol’skii V.V. Tenzometricheskaya vstavka dlya izmereniya malykh sil pri elektroalmaznom shlifovanii [Strain gauge insert for measuring small forces during electric diamond grinding]. Patent RF, no. 2210749 C2, 2003.
RkJQdWJsaXNoZXIy MTk0ODM1