OBRABOTKAMETALLOV Vol. 27 No. 1 2025 128 EQUIPMENT. INSTRUMENTS gosudarstvennogo tekhnicheskogo universiteta = Vestnik of Don State Technical University, 2020, no. 2 (20), pp. 188– 195. DOI: 10.23947/1992-5980-2020-20-2-188-195. 4. Zakovorotnyi V.L., Gvindjiliya V.E. Infl uence of speeds of forming movements on the properties of geometric topology of the part in longitudinal turning. Journal of Manufacturing Processes, 2024, no. 112, pp. 202–213. DOI: 10.1016/j.jmapro.2024.01.037. 5. Altintas Y., Kersting P., Biermann D., Budak E., Denkena B., Lazoglu I. Virtual process systems for part machining operations. CIRP Annals, 2014, no. 2 (63), pp. 585–605. DOI: 10.1016/j.cirp.2014.05.007. 6. Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge, New York, Cambridge University Press, 2012. 366 p. 7. Altintaş Y., Budak E. Analytical prediction of stability lobes in milling. CIRP Annals, 1995, vol. 1 (44), pp. 357–362. DOI: 10.1016/S0007-8506(07)62342-7. 8. KabaldinY.G., Shatagin D.A. Artifi cial intelligence and cyberphysical machining systems in digital production. Russian Engineering Research, 2020, vol. 40 (4), pp. 292–296. DOI: 10.3103/S1068798X20040115. 9. Chigirinsky Yu.L., Ingemansson A.R. Tekhnologicheskie aspekty podgotovki tsifrovogo mashinostroitel’nogo proizvodstva [Engineering process aspects of digitalization of machine-building production]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2023, no. 9 (147), pp. 39–48. DOI: 10.30987/2223-4608-2023-39-48. 10. Zakovorotny V.L., Gvindjiliya V.E. Process control synergetics for metal-cutting machines. Journal of Vibroengineering, 2022, vol. 24 (1), pp. 177–189. DOI: 10.21595/jve.2021.22087. 11. Gong S., Li S., Zhang Y., Zhou L., Xia M. Digital twin-assisted intelligent fault diagnosis for bearings. Measurement Science and Technology, 2024, vol. 35 (10), p. 106128. DOI: 10.1088/1361-6501/ad5f4c. 12. Zhang Y., Ji J.C., Ren Z., Ni Q., Gu F., Feng K., Yu K., Ge J., Lei Z., Liu Z. Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing. Reliability Engineering & System Safety, 2023, vol. 234, p. 109186. DOI: 10.1016/j.ress.2023.109186. 13. Li T., Shi H., Bai X., Zhang K. A digital twin model of life-cycle rolling bearing with multiscale fault evolution combined with diff erent scale local fault extension mechanism. IEEE Transactions on Instrumentation and Measurement, 2023, vol. 72, pp. 1–11. DOI: 10.1109/TIM.2023.3243663. 14. Li Z., Ding X., Song Z., Wang L., Qin B., Huang W. Digital twin-assisted dual transfer: a novel informationmodel adaptation method for rolling bearing fault diagnosis. Information Fusion, 2024, vol. 106, p. 102271. DOI: 10.1016/j.inff us.2024.102271. 15. Zakovorotny V.L., Gvindjiliya V.E. Sinergeticheskii podkhod k povysheniyu eff ektivnosti upravleniya processami obrabotki na metallorezhushchikh stankakh [Synergetic approach to improve the effi ciency of machining process control on metal- cutting machines]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 84–99. DOI: 10.17212/1994-6309-2021-23.3-84-99. 16. Ryzhkin A.A. Sinergetika iznashivaniya instrumental’nykh rezhushchikh materialov (triboelektricheskii aspekt) [Synergetics of wear of tool cutting materials (triboelectric aspect)]. Rostov-on-Don, DSTU Publ., 2004. 323 p. ISBN 5-7890-0307-9. 17. Lapshin V.P. Turning tool wear estimation based on the calculated parameter values of the thermodynamic subsystem of the cutting system. Materials, 2021, vol. 21 (14), p. 6492. DOI: 10.3390/ma14216492. 18. Lapshin V., Turkin I., Dudinov I. Research on infl uence of tool deformation in the direction of cutting and feeding on the stabilization of vibration activity during metal processing using metal-cutting machines. Sensors, 2023, vol. 17 (23), p. 7482. DOI: 10.3390/s23177482. 19. Huang J., Chen G., Wei H., Chen Zh., Lv Y. Sensor-based intelligent tool online monitoring technology: applications and progress. Measurement Science and Technology, 2024, vol. 35 (11), p. 112001. DOI: 10.1088/13616501/ad66f1. 20. Lapshin V.P., Moiseev D.V. Opredelenie optimal’nogo rezhima obrabotki metallov pri analize dinamiki sistem upravleniya rezaniem [Determination of the optimal metal processing mode when analyzing the dynamics of cutting control systems]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 1, pp. 16–43. DOI: 10.17212/1994-6309-2023-25.1-16-43. Confl icts of Interest The authors declare no confl ict of interest. © 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1