OBRABOTKAMETALLOV Vol. 27 No. 1 2025 187 MATERIAL SCIENCE В будущих исследованиях следует уделить внимание испытаниям на усталость для оценки прочности материала при циклических нагрузках, имитирующих нагрузки, которые возникают в имплантатах, установленных в теле человека. Кроме того, необходимы клинические исследования для подтверждения биосовместимости и эффективности данного материала в долгосрочной перспективе. Список литературы 1. The needs of current implant technology in orthopaedic prosthesis biomaterials application to reduce prosthesis failure rate / J.R. Ahmad, F.M. Aldo, S. Ifran, K. Tri, W. Yudan // Journal of Nanomaterials. – 2016. – Art. 5386924. – DOI: 10.1155/2016/5386924. 2. Garcia E., Fernandez A., Martin L. Comparative analysis of traditional and advanced materials for hip joint implants // Materials Science and Engineering C. – 2020. – Vol. 112. – P. 110857. – DOI: 10.1080/1745367 4.2018.1427320. 3. Developments of PEEK (Polyetheretherketone) as a biomedical material: a focused review / S. Verma, N. Sharma, S. Kango, S. Sharma // European Polymer Journal. – 2021. –Vol. 147. – P. 110295. – DOI: 10.1016/j. eurpolymj.2021.110295. 4. PEEK for oral applications: recent advances in mechanical and adhesive properties / C. Luo, Y. Liu, B. Peng, M. Chen, Z. Liu, Z. Li, H. Kuang, B. Gong, Z. Li, H. Sun // Polymers. – 2023. – Vol. 15 (2). – DOI: 10.3390/polym15020386. 5. 3D printing for hip implant applications: a review / O. Obinna, I. Stachurek, B. Kandasubramanian, J. Njuguna // Polymers. – 2020. – Vol. 12 (11). – P. 2682. – DOI: 10.3390/polym12112682. 6. Влияние направления печати на характер износа PLA-биоматериала, полученного методом FDM: исследование для имплантата тазобедренного сустава / Й.Б. Дама, Б.Ф. Джоги, Р. Паваде, А.П. Кулкарни // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 4. – С. 19–40. – DOI: 10.17212/1994-6309-2024-26.4-19-40. 7. Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO4·2H2O) and antibiotics for anti-infection and enhanced osseointegration / Z. Xue, Z. Wang, A. Sun, J. Huang, W. Wu, M. Chen, X. Hao, Z. Huang, X. Lin, S. Weng // Materials Science & Engineering: C. – 2020. – Vol. 111. – P. 110782. – DOI: 10.1016/j. msec.2020.110782. 8. Wear mechanism and debris analysis of PEEK as an alternative to CoCrMo in the femoral component of total knee replacement / X. Zhang, T. Zhang, K. Chen, H. Xu, C. Feng, D. Zhang // Friction. – 2023. – Vol. 11 (10). – P. 1845–1861. – DOI: 10.1007/s40544022-0700-z. 9. Bioactive PEEK: surface enrichment of vitronectin-derived adhesive peptides / L. Cassari, A. Zamuner, G.M.L. Messina, M. Marsotto, H. Chen, G. Gonnella, T. Coward, C. Battocchio, J. Huang, G. Iucci, G. Marletta, L. Di Silvio, M. Dettin // Biomolecules. – 2023. – Vol. 13 (2). – P. 246. – DOI: 10.3390/biom13020246. 10. Yu D., Lei X., Zhu H. Modifi cation of polyetheretherketone (PEEK) physical features to improve osteointegration // Journal of Zhejiang University-Science B. – 2022. – Vol. 23 (3). – P. 189– 203. – DOI: 10.1631/jzus.B2100622. 11. 3D-printed PEEK/silicon nitride scaff olds with a triply periodic minimal surface structure for spinal fusion implants / X. Du, S. Ronayne, S.S. Lee, J. Hendry, D. Hoxworth, R. Bock, S.J. Ferguson // ACS Applied Bio Materials. – 2023. – Vol. 6 (8). – P. 3319–3329. – DOI: 10.1021/acsabm.3c00383. 12. Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization / X. Han, N. Sharma, S. Spintzyk, Y. Zhou, Z. Xu, F.M. Thieringer, F. Rupp // Dental Materials. – 2022. – Vol. 38 (7). – P. 1083–1098. – DOI: 10.1016/j.dental.2022.04.026. 13. Dama Y.B., Jogi B.F., Pawade R.S. Application of nonlinear analysis in evaluating additive manufacturing processes for engineering design features: a study and recommendations // Communications on Applied Nonlinear Analysis. – 2024. – Vol. 31 (1s). – DOI: 10.52783/ cana.v31.559. 14. Explainable AI techniques for comprehensive analysis of the relationship between process parameters and material properties in FDM-based 3D-printed biocomposites / N. Kharate, P. Anerao, A. Kulkarni, M. Abdullah // Journal of Manufacturing and Materials Processing. – 2024. – Vol. 8 (4). – P. 171. – DOI: 10.3390/ jmmp8040171. 15. A comprehensive mechanical characterization of as-printed and saliva soaked 3D printed PEEK specimens for low-cost dental implant applications / K.U.K. Reddy, P.C. Verma, A. Rathi, P. Saravanan // Materials Today Communications. – 2023. – Vol. 36. – P. 106438. – DOI: 10.1016/j.mtcomm.2023.106438. 16. Preclinical evaluation of a mini-arthroplasty implant based on polyetheretherketone and Ti6AI4V for treatment of a focal osteochondral defect in the femoral head of the hip / W. Zhang, Z. Yuan, X. Meng, J. Zhang, T. Long, Z. Yaochao, C. Yang, R. Lin, B. Yue, Q. Guo, Y. Wang // Biomedical Materials. – 2020. – Vol. 15 (5). – P. 055027. – DOI: 10.1088/1748-605x/ab998a. 17. 3D-printed PEEK/silicon nitride scaff olds with a triply periodic minimal surface structure for spinal
RkJQdWJsaXNoZXIy MTk0ODM1