OBRABOTKAMETALLOV Vol. 27 No. 1 2025 190 MATERIAL SCIENCE 2. Garcia E., Fernandez A., Martin L. Comparative analysis of traditional and advanced materials for hip joint implants. Materials Science and Engineering C, 2020, vol. 112, p. 110857. DOI: 10.1080/17453674.2018.1427320. 3. Verma S., Sharma N., Kango S., Sharma S. Developments of PEEK (Polyetheretherketone) as a biomedical material: a focused review. European Polymer Journal, 2021, vol. 147, p. 110295. DOI: 10.1016/j.eurpolymj.2021.110295. 4. Luo C., Liu Y., Peng B., Chen M., Liu Z., Li Z., Kuang H., Gong B., Li Z., Sun H. PEEK for oral applications: recent advances in mechanical and adhesive properties. Polymers, 2023, vol. 15 (2). DOI: 10.3390/ polym15020386. 5. Obinna O., Stachurek I., Kandasubramanian B., Njuguna J. 3D printing for hip implant applications: a review. Polymers, 2020, vol. 12 (11), p. 2682. DOI: 10.3390/polym12112682. 6. Dama Y., Jogi B., Pawade R., Kulkarni A. Impact of print orientation on wear behavior in FDM printed PLA biomaterial: study for hip-joint implant. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 4, pp. 19–40. DOI: 10.17212/1994-6309-2024-26.4-19-40. 7. Xue Z., Wang Z., Sun A., Huang J., Wu W., Chen M., Hao X., Huang Z., Lin X., Wenig S. Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO4·2H2O) and antibiotics for anti-infection and enhanced osseointegration. Materials Science & Engineering: C, 2020, vol. 111, p. 110782. DOI: 10.1016/j.msec.2020.110782. 8. Zhang X., Zhang T., Chen K., Xu H., Feng C., Zhang D. Wear mechanism and debris analysis of PEEK as an alternative to CoCrMo in the femoral component of total knee replacement. Friction, 2023, vol. 11 (10), pp. 1845– 1861. DOI: 10.1007/s40544-022-0700-z. 9. Cassari L., Zamuner A., Messina G.M.L., Marsotto M., Chen H., Gonnella G., Coward T., Battocchio C., Huang J., Iucci G., Marletta G., Di Silvio L., Dettin M. Bioactive PEEK: surface enrichment of vitronectin-derived adhesive peptides. Biomolecules, 2023, vol. 13 (2), p. 246. DOI: 10.3390/biom13020246. 10. Yu D., Lei X., Zhu H. Modifi cation of polyetheretherketone (PEEK) physical features to improve osteointegration. Journal of Zhejiang University-Science B, 2022, vol. 23 (3), pp. 189–203. DOI: 10.1631/jzus.B2100622. 11. Du X., Ronayne S., Lee S.S., Hendry J., Hoxworth D., Bock R., Ferguson S.J. 3D-printed PEEK/silicon nitride scaff olds with a triply periodic minimal surface structure for spinal fusion implants. ACS Applied Bio Materials, 2023, vol. 6 (8), pp. 3319–3329. DOI: 10.1021/acsabm.3c00383. 12. Han X., Sharma N., Spintzyk S., Zhou Y., Xu Z., Thieringer F.M., Rupp F. Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization. Dental Materials, 2022, vol. 38 (7), pp. 1083–1098. DOI: 10.1016/j.dental.2022.04.026. 13. Dama Y.B., Jogi B.F., Pawade R.S. Application of nonlinear analysis in evaluating additive manufacturing processes for engineering design features: a study and recommendations. Communications on Applied Nonlinear Analysis, 2024, vol. 31 (1s). DOI: 10.52783/cana.v31.559. 14. Kharate N., Anerao P., Kulkarni A., Abdullah M. Explainable AI techniques for comprehensive analysis of the relationship between process parameters and material properties in FDM-based 3D-printed biocomposites. Journal of Manufacturing and Materials Processing, 2024, vol. 8 (4), p. 171. DOI: 10.3390/jmmp8040171. 15. Reddy K.U.K., Verma P.C., Rathi A., Saravanan P. A comprehensive mechanical characterization of as-printed and saliva soaked 3D printed PEEK specimens for low-cost dental implant applications. Materials Today Communications, 2023, vol. 36, p. 106438. DOI: 10.1016/j.mtcomm.2023.106438. 16. Zhang W., Yuan Z., Meng X., Zhang J., Long T., Yaochao Z., Yang C., Lin R., Yue B., Guo Q. Wang Y. Preclinical evaluation of a mini-arthroplasty implant based on polyetheretherketone and Ti6AI4V for treatment of a focal osteochondral defect in the femoral head of the hip. Biomedical Materials, 2020, vol. 15 (5), p. 055027. DOI: 10.1088/1748-605x/ab998a. 17. Du X., Ronayne S., Lee S.S., Hendry J., Hoxworth D., Bock R., Ferguson S.J. 3D-printed PEEK/silicon nitride scaff olds with a triply periodic minimal surface structure for spinal fusion implants. ACS Applied Bio Materials, 2023, vol. 6 (8), pp. 3319–3329. DOI: 10.1021/acsabm.3c00383. 18. Lim K.M., Park T.H., Lee S.J., Park S.J. Design and biomechanical verifi cation of additive manufactured composite spinal cage composed of porous titanium cover and PEEK body. Applied Sciences, 2019, vol. 9 (20), p. 4258. DOI: 10.3390/app9204258. 19. Gosavi A., Kulkarni A., Dama Y., Deshpande A., Jogi B. Comparative analysis of drop impact resistance for diff erent polymer-based materials used for hearing aid casing. Materials Today: Proceedings, 2022, vol. 49, pp. 2433–2441. DOI: 10.1016/j.matpr.2021.09.519. 20. Carpenter R.D., Klosterhoff B.S., Torstrick F.B., Foley K.T., Burkus J.K., Lee C.S., Gall K., Guldberg R.E., Safranski D.L. Eff ect of porous orthopaedic implant material and structure on load sharing with simulated bone
RkJQdWJsaXNoZXIy MTk0ODM1