Obrabotka Metallov 2025 Vol. 27 No. 1

ОБРАБОТКА МЕТАЛЛОВ Том 27 № 1 2025 72 ТЕХНОЛОГИЯ с повышенной износостойкостью и потенциально – специальной геометрии. Разработанные в рамках исследования эмпирические зависимости, а также рекомендации по выбору инструмента и подбору режимов резания для фрезерования заготовок из инконеля 625, полученных методом WAAM, позволят повысить эффективность и производительность обработки аддитивно изготовленных деталей. Однако необходимы дальнейшие исследования для более глубокого понимания влияния остаточных напряжений и развития методов их контроля. Это позволит оптимизировать процессы фрезерования для достижения высоких значений качества обработки, производительности и экономической эффективности. Список литературы 1. Alvarez L.F., Garcia C., Lopez V. Continuous cooling transformations in martensitic stainless steels // ISIJ International. – 1994. – Vol. 34 (6). – P. 516–521. – DOI: 10.2355/isijinternational.34.516. 2. On the microstructure and corrosion behavior of wire arc additively manufactured AISI 420 stainless steel / M. Kazemipour, J.H. Lunde, S. Salahi, A. Nasiri // TMS 2020: 149th Annual Meeting & Exhibition Supplemental Proceedings. – Cham: Springer, 2020. – P. 435–448. – DOI: 10.1007/978-3-030-36296-6_41. 3. Liverani E., Fortunato A. Additive manufacturing of AISI 420 stainless steel: process validation, defect analysis and mechanical characterization in diff erent process and post-process conditions // The International Journal of Advanced Manufacturing Technology. – 2021. – Vol. 117 (3–4). – P. 809–821. – DOI: 10.1007/ s00170-021-07639-6. 4. Ultra-high strength martensitic 420 stainless steel with high ductility / K. Saeidi, D.L. Zapata, F. Lofaj, L. Kvetkova, J. Olsen, Z. Shen, F. Akhtar // Additive Manufacturing. – 2019. – Vol. 29. – P. 100803. – DOI: 10.1016/j.addma.2019.100803. 5. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels / P. Krakhmalev, I. Yadroitsava, G. Fredriksson, I. Yadroitsev // Materials & Design. – 2015. – Vol. 87. – P. 380–385. – DOI: 10.1016/j.matdes.2015.08.045. 6. Characterization of wire arc additive manufacturing 2Cr13 part: Process stability, microstructural evolution, and tensile properties / J. Ge, J. Lin, Y. Chen, Y. Lei, H. Fu // Journal of Alloys and Compounds. – 2018. – Vol. 748. – P. 911–921. – DOI: 10.1016/j. jallcom.2018.03.222. 7. Process parameters eff ect on weld beads geometry deposited by Wire and Arc Additive Manufacturing (WAAM) / S. Manokruang, F. Vignat, M. Museau, M. Limousin // Advances on Mechanics, Design Engineering and Manufacturing III: Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing, JCM 2020, June 2–4, 2020. – Cham: Springer, 2021. – P. 9–14. – DOI: 10.1007/978-3-030-70566-4_3. 8. Grzesik W. Hybrid additive and subtractive manufacturing processes and systems: a review // Journal of Machine Engineering. – 2018. – Vol. 18 (4). – P. 5–24. – DOI: 10.5604/01.3001.0012.7629. 9. Eff ect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM) / J.G. Lopes, C.M. Machado, V.R. Duarte, T.A. Rodrigues, T.G. Santos, J.P. Oliveira // Journal of Manufacturing Processes. – 2020. – Vol. 59. – P. 739– 749. – DOI: 10.1016/j.jmapro.2020.10.007. 10. New observations on wear characteristics of solid Al2O3/Si3N4 ceramic tool in high speed milling of additive manufactured Ti6Al4V / J. Dang, H. Zhang, W. Ming, O. An, M. Chen // Ceramics International. – 2020. – Vol. 46 (5). – P. 5876–5886. – DOI: 10.1016/j. ceramint.2019.11.039. 11. Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy / A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani // Wear. – 2015. – Vol. 328–329. – P. 89–99. – DOI: 10.1016/j. wear.2015.01.030. 12. Infl uence of fi nish machining on the surface integrity of Ti6Al4Vproduced by selective laser melting / S. Milton, A. Morandeau, F. Chalon, R. Leroy // Procedia Cirp. – 2016. – Vol. 45. – P. 127–130. – DOI: 10.1016/j. procir.2016.02.340. 13. Keist J.S., Palmer T.A. Development of strengthhardness relationships in additively manufactured titanium alloys // Materials Science and Engineering:A. – 2017. – Vol. 693. – P. 214–224. – DOI: 10.1016/j. msea.2017.03.102. 14. The eff ect of fi nish-milling operation on surface quality and wear resistance of Inconel 625 produced by selective laser melting additive manufacturing / E. Tascioglu, Yu. Kaynak, Ö. Poyraz, A. Orhangül, S. Ören // Advanced Surface Enhancement (INCASE 2019). – Singapore: Springer, 2020. – P. 263– 272. – DOI: 10.1007/978-981-15-0054-1_27. 15. Cutting forces analysis in additive manufactured AISI H13 alloy / F. Montevecchi, N. Grossi, H. Takagi, A. Scippa, H. Sasahara, G. Campatelli // Procedia CIRP. – 2016. – Vol. 46. – P. 476–479. – DOI: 10.1016/j. procir.2016.04.034. 16. Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process / F. Hojati, A. Daneshi, B. Soltani, B. Azarhoushang, D. Biermann // Precision Engineering. – 2020. – Vol. 62. – P. 1–9. – DOI: 10.1007/ s00170-020-06391-7.

RkJQdWJsaXNoZXIy MTk0ODM1