Obrabotka Metallov 2025 Vol. 27 No. 2

OBRABOTKAMETALLOV Vol. 27 No. 2 2025 102 TECHNOLOGY 4. Bakhno A.L. Yamnikov A.S., Vasilyev A.S., Chuprikov A.O. Povyshenie tochnosti rastachivaniya otverstii v svarnykh korpusakh [More precise reaming of holes in welded components]. STIN = Russian Engineering Research, 2019, no. 6, pp. 38–40. (In Russian). 5. Du W., Wang L., Shao Y. A semi-analytical dynamics method for spindle radial throw in boring process. Journal of Manufacturing Processes, 2023, vol. 96, pp. 110–124. DOI: 10.1016/j.jmapro.2023.04.047. 6. Stelmakov V.A., Gimadeev M.R., Iakuba D.D. Research on the process of forming cylindrical surfaces of holes during milling fi nish with end mills using a circular interpolation strategy. Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Vol. 2. Cham, Springer, 2021, pp. 917–925. DOI: 10.1007/9783-030-54817-9_106. 7. Cao H., Li B., Li Y., Kang T., Chen X. Model-based error motion prediction and fi t clearance optimization for machine tool spindles. Mechanical Systems and Signal Processing, 2019, vol. 133, p. 106252. DOI: 10.1016/j. ymssp.2019.106252. 8. Chen Y., Zhao X., Gao W., Hu G., Zhang S., Zhang D. A novel multi-probe method for separating spindle radial error from artifact roundness error. The International Journal of Advanced Manufacturing Technology, 2017, vol. 93, pp. 623–634. DOI: 10.1007/s00170-017-0533-5. 9. Gokulu T., Defant F., Albertelli P. Stability analysis of multi-insert rotating boring bar with stiff ness variation. Journal of Sound and Vibration, 2024, vol. 586, p. 118497. DOI: 10.1016/j.jsv.2024.118497. 10. Liu T.I., Kumagai A., Wang Y.C., Song S.D., Fu Z., Lee J. On-line monitoring of boring tools for control of boring operations. Robotics and Computer-Integrated Manufacturing, 2010, vol. 26, pp. 230–239. DOI: 10.1016/j. rcim.2009.11.002. 11. Liu Z., Lang Z.Q., Gui Y., Zhu Y.P., Laalej H. Digital twin-based anomaly detection for real-time tool condition monitoring in machining. Journal of Manufacturing Systems, 2024, vol. 75, pp. 163–173. DOI: 10.1016/j. jmsy.2024.06.004. 12. Zheng Y., Hu C., Wang M., Wu Z., Zhang J., Xu J. A novel design for double-bending elliptical vibration boring device and its performance evaluation. Ultrasonics, 2025, vol. 149, p. 107584. DOI: 10.1016/j. ultras.2025.107584. 13. Li L., Ren Y., Shen Z., Lu J., Tong L. Nonlinear system optimization of cutting tools with dynamic vibration absorbers in deep hole boring: a stability analysis. Alexandria Engineering Journal, 2025, vol. 112, pp. 246–253. DOI: 10.1016/j.aej.2024.10.113. 14. Xiao W., Zi Y., Chen B., Li B., He Z. A novel approach to machining condition monitoring of deep hole boring. International Journal of Machine Tools and Manufacture, 2014, vol. 77, pp. 27–33. DOI: 10.1016/j. ijmachtools.2013.10.009. 15. Elerian F.A., Helal W.M.K., AbouEleaz M.A. Methods of roundness measurement: an experimental comparative study. Journal of Mechanical Engineering Research and Developments, 2021, vol. 44 (9), pp. 173–183. DOI: 10.13140/RG.2.2.18930.43206. 16. Lee D.E., Hwang I., Valente C.M., Oliveira J.F.G., Dornfeld D.A. Precision manufacturing process monitoring with acoustic emission. International Journal of Machine Tools and Manufacture, 2006, vol. 46 (2), pp. 176–188. DOI: 10.1016/j.ijmachtools.2005.04.001. 17. Dimla D.E. Sensor signals for tool-wear monitoring in metal cutting operations – a review of methods. International Journal of Machine Tools and Manufacture, 2000, vol. 40 (8), pp. 1073–1098. DOI: 10.1016/S08906955(99)00122-4. 18. Sui W., Zhang D. Four methods for roundness evaluation. Physics Procedia, 2012, vol. 24, pp. 2159–2164. DOI: 10.1016/j.phpro.2012.02.317. 19. He Q., Zheng P., Lv X., Li J., Li Y. A new method for evaluating roundness error based on improved bat algorithm. Measurement, 2024, vol. 238, p. 115314. DOI: 10.1016/j.measurement.2024.115314. 20. Shan L., Xiangqian J., Scott P.J. Morphological fi lters for functional assessment of roundness profi les. Measurement Science and Technology, 2014, vol. 25 (6), p. 065005. DOI: 10.1088/0957-0233/25/6/065005. 21. Mozhin N.A., Avrel’kin V.A., Fedulov E.A. Osnovy teorii rezaniya materialov [Fundamentals of the theory of cutting materials]. Ivanovo, IVGPU Publ., 2018. 84 p. 22. Atapin V.G. Soprotivlenie materialov [Resistance of materials]. Moscow, Yurait Publ., 2020. 342 p. ISBN 978-5-534-09059-8. Confl icts of Interest The authors declare no confl ict of interest. © 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1