OBRABOTKAMETALLOV Vol. 27 No. 2 2025 204 MATERIAL SCIENCE 2. Kaladhar M., Venkata Subbaiah K., Srinivasa Rao C.H. Machining of austenitic stainless steels – a review. International Journal of Machining and Machinability of Materials, 2012, vol. 12 (1–2), pp. 178–192. DOI: 10.1504/ IJMMM.2012.048564. 3. Karjalainen L.P., Taulavuori T., Sellman M., KyröläinenA. Some strengthening methods for austenitic stainless steels. Steel Research International, 2008, vol. 79 (6), pp. 404–412. DOI: 10.1002/srin.200806146. 4. Huang J., Ye X., Xu Z. Eff ect of cold rolling on microstructure and mechanical properties of AISI 301LN metastable austenitic stainless steels. Journal of Iron and Steel Research International, 2012, vol. 19 (10), pp. 59–63. DOI: 10.1016/S1006-706X(12)60153-8. 5. Liu Z., Han Y., Wu Z., Sun J., Zu G., Zhu W., Ran X. Microstructures and mechanical properties of cold-rolled 21Cr lean duplex stainless steel with medium to high cold rolling reductions. Materials Today Communications, 2022, vol. 33, p. 104860. DOI: 10.1016/j.mtcomm.2022.104860. 6. Huang M., Wang C., Wang L., Wang J., Mogucheva A., Xu W. Infl uence of DIMT on impact toughness: relationship between crack propagation and the α′-martensite morphology in austenitic steel. Materials Science and Engineering: A, 2022, vol. 844, p. 143191. DOI: 10.1016/j.msea.2022.143191. 7. Ozgowicz W., Kurc A. The eff ect of the cold rolling on the structure and mechanical properties in austenitic stainless steels type 18-8. Archives of Materials Science and Engineering, 2009, vol. 38 (1), pp. 26–33. 8. Hwang B., Lee T.H., Park S.J., Oh C.S., Kim S.J. Correlation of austenite stability and ductile-to-brittle transition behavior of high-nitrogen 18Cr-10Mn austenitic steels. Materials Science and Engineering: A, 2011, vol. 528 (24), pp. 7257–7266. DOI: 10.1016/j.msea.2011.06.025. 9. Kelly P.M., Rose L.R.F. The martensitic transformation in ceramics – its role in transformation toughening. Progress in Materials Science, 2002, vol. 47 (5), pp. 463–557. DOI: 10.1016/S0079-6425(00)00005-0. 10. Panov D.O., Chernichenko R.S., Naumov S.V., PertcevA.S., Stepanov N.D., Zherebtsov S.V., Salishchev G.A. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation. Materials Letters, 2021, vol. 303, p. 130585. DOI: 10.1016/j.matlet.2021.130585. 11. Huang M., Wang L., Yuan S., Wang J., Wang C., Mogucheva A., Xu W. Scale-up fabrication of gradient AGS in austenitic stainless steels achieves a simultaneous increase in strength and toughness. Materials Science and Engineering: A, 2022, vol. 853, p. 143763. DOI: 10.1016/j.msea.2022.143763. 12. Zhang J., HanW., Huang Z., Li J., Zhang M., Zhang L. Study on microstructure evolution and nanoindentation characteristics of 316 L austenitic stainless steel with inverse gradient grain sizes fabricated via torsion and electro-magnetic induction heating. Materials Characterization, 2021, vol. 181, p. 111462. DOI: 10.1016/j. matchar.2021.111462. 13. Wang H.T., Tao N.R., Lu K. Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel. Scripta Materialia, 2013, vol. 68 (1), pp. 22–27. DOI: 10.1016/j.scriptamat.2012.05.041. 14. Ho H.S., Zhou W.L., Li Y., Liu K.K., Zhang E. Low-cycle fatigue behavior of austenitic stainless steels with gradient structured surface layer. International Journal of Fatigue, 2020, vol. 134, p. 105481. DOI: 10.1016/j. ijfatigue.2020.105481. 15. Panov D.O., Kudryavtsev E.A., Chernichenko R.S., Naumov S.V., Klimenko D.N., Stepanov N.D., Zherebtsov S.V., Salishchev G.A., Sanin V.V., Pertsev A.S. Excellent strength-ductility combination of interstitial non-equiatomic middle-entropy alloy subjected to cold rotary swaging and post-deformation annealing. Materials Science and Engineering: A, 2024, vol. 898, p. 146121. DOI: 10.1016/j.msea.2024.146121. 16. Wu X., Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters, 2017, vol. 5 (8), pp. 527–532. DOI: 10.1080/21663831.2017.1343208. 17. Wu X., Yang M., Yuan F., Wu G., Wei Y., Huang X., Zhu Y. Heterogeneous lamella structure unites ultrafi negrain strength with coarse-grain ductility. Proceedings of the National Academy of Sciences of the United States of America, 2015, vol. 112 (47), pp. 14501–14505. DOI: 10.1073/pnas.1517193112. 18. Chen A., Liu J., Wang H., Lu J., Wang Y.M. Gradient twinned 304 stainless steels for high strength and high ductility. Materials Science and Engineering: A, 2016, vol. 667, pp. 179–188. DOI: 10.1016/j.msea.2016.04.070. 19. Nayzabekov A., Lezhnev S., Maksimkin O., Tsai K., Panin E., Arbuz A. Microstructure and mechanical properties of austenitic stainless steel AISI-321 after radial shear rolling. Journal of Chemical Technology and Metallurgy, 2018, vol. 53 (3), pp. 606–611. 20. Panov D., Kudryavtsev E., Naumov S., Klimenko D., Chernichenko R., Mirontsov V., Stepanov N., Zherebtsov S., Salishchev G., Pertcev A. Gradient microstructure and texture formation in a metastable austenitic stainless steel during cold rotary swaging. Materials, 2023, vol. 16 (4), p. 1706. DOI: 10.3390/ma16041706.
RkJQdWJsaXNoZXIy MTk0ODM1