Obrabotka Metallov 2025 Vol. 27 No. 2

ОБРАБОТКА МЕТАЛЛОВ Том 27 № 2 2025 218 МАТЕРИАЛОВЕДЕНИЕ 4. Kim H., Suh D., Kim N.J., Kim H., Suh D., Kim N.J. Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Science and Technology of Advanced Materials, 2013, vol. 14 (1), p. 014205. DOI: 10.1088/1468-6996/14/1/014205. 5. Yoo J.D., Hwang S.W., Park K.T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel. Metallurgical and Materials Transactions: A, 2009, vol. 40 (7), pp. 1520–1523. DOI: 10.1007/s11661-009-9862-9. 6. Moon J., Park S.J., Jang J.H., Lee T.H., Lee C.H., Hong H.U., Han H.N., Lee J., Lee B.H., Lee C. Investigations of the microstructure evolution and tensile deformation behavior of austenitic Fe-Mn-Al-C lightweight steels and the eff ect of Mo addition. Acta Materialia, 2018, vol. 147, pp. 226–235. DOI: 10.1016/j.actamat.2018.01.051. 7. Chen P., Zhang F., Zhang Q.C., Du J.H., Shi F., Li X.W. Precipitation behavior of κ-carbides and its relationship with mechanical properties of Fe–Mn–Al–C lightweight austenitic steel. Journal of Materials Research and Technology, 2023, vol. 25 (12), pp. 3780–3788. DOI: 10.1016/j.jmrt.2023.06.212. 8. Harwarth M., Chen G., Rahimi R., Biermann H., Zargaran A., Duff y M., Zupan M., Mola J. Aluminumalloyed lightweight stainless steels strengthened by B2-(Ni,Fe)Al precipitates. Materials & Design, 2021, vol. 206, p. 109813. DOI: 10.1016/j.matdes.2021.109813. 9. Kim C.W., Kwon S.I., Lee B.H., Moon J.O., Park S.J., Lee J.H., Hong H.U. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel. Materials Science and Engineering: A, 2016, vol. 673, pp. 108–113. DOI: 10.1016/j.msea.2016.07.029. 10. Li Z., Wang Y.C., Cheng X., Gao C., Li Z., Langdon T.G. Microstructure and mechanical properties of an Fe– Mn–Al–C lightweight steel after dynamic plastic deformation processing and subsequent aging. Materials Science and Engineering: A, 2022, vol. 833, p. 142566. DOI: 10.1016/j.msea.2021.142566. 11. Rahnama A., Kotadia H., Sridhar S. Eff ect of Ni alloying on the microstructural evolution and mechanical properties of two duplex light-weight steels during diff erent annealing temperatures: experiment and phase-fi eld simulation. Acta Materialia, 2017, vol. 132 (6), pp. 627–643. DOI: 10.1016/j.actamat.2017.03.043. 12. Xiang S., Liu X., Xu R., Yin F., Cheng G.J. Ultrahigh strength in lightweight steel via avalanche multiplication of intermetallic phases and dislocation. Acta Materialia, 2023, vol. 242, p. 118436. DOI: 10.1016/j. actamat.2022.118436. 13. Moon J., Park S.J., Lee C.H., Hong H.U., Lee B.H., Kim S.D. Infl uence of microstructure evolution on hot ductility behavior of austenitic Fe–Mn–Al–C lightweight steels during hot tensile deformation. Materials Science and Engineering: A, 2023, vol. 868, p. 144786. DOI: 10.1016/j.msea.2023.144786. 14. Mao Q., Liu Y., Zhao Y. A review on mechanical properties and microstructure of ultrafi ne grained metals and alloys processed by rotary swaging. Journal of Alloys and Compounds, 2022, vol. 896, p. 163122. DOI: 10.1016/j. jallcom.2021.163122. 15. Machácková A., Krátká L., Petrmichl R., Kuncická L., Kocich R. Aff ecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature. Materials, 2019, vol. 12 (24), p. 4200. DOI: 10.3390/ma12244200. 16. Panov D., Chernichenko R., Kudryavtsev E., Klimenko D., Naumov S., Pertcev A. Eff ect of cold swaging on the bulk gradient structure formation and mechanical properties of a 316-type austenitic stainless steel. Materials, 2022, vol. 15 (7), p. 2468. DOI: 10.3390/ma15072468. 17. Panov D., Kudryavtsev E., Naumov S., Klimenko D., Chernichenko R., Mirontsov V., Stepanov N., Zherebtsov S., Salishchev G., Pertcev A. Gradient microstructure and texture formation in a metastable austenitic stainless steel during cold rotary swaging. Materials, 2023, vol. 16 (4), p. 1706. DOI: 10.3390/ma16041706. 18. Panov D.O., Kudryavtsev E.A., Chernichenko R.S., Naumov S.V., Klimenko D.N., Stepanov N.D., Zherebtsov S.V., Salishchev G.A., Sanin V.V., Pertsev A.S. Excellent strength-ductility combination of interstitial non-equiatomic middle-entropy alloy subjected to cold rotary swaging and post-deformation annealing. Materials Science and Engineering: A, 2024, vol. 898, p. 146121. DOI: 10.1016/j.msea.2024.146121. 19. Fonda R.W., Knipling K.E. Texture development in friction stir welds. Science and Technology of Welding & Joining, 2011, vol. 16 (4), pp. 288–294. DOI: 10.1179/1362171811Y.0000000010. 20. Suwas S., Ray R.K. Crystallographic texture of materials. London, Springer, 2014. 265 p. ISBN 978-1-44716313-8. DOI: 10.1007/978-1-4471-6314-5. Confl icts of Interest The authors declare no confl ict of interest. © 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1