Obrabotka Metallov 2025 Vol. 27 No. 2

OBRABOTKAMETALLOV Vol. 27 No. 2 2025 26 TECHNOLOGY 2. Sundukov S.K. Ul’trazvukovye tekhnologii v protsessakh polucheniya neraz”emnykh soedinenii [Ultrasonic technologies in the processes of obtaining permanent connections]. Moscow, Tekhpoligraftsentr Publ., 2023. 263 p. ISBN 978-5-94385-209-1. 3. Grigor’ev S.N., Tarasova T.V. Vozmozhnosti tekhnologii additivnogo proizvodstva dlya izgotovleniya slozhnoprofi l’nykh detalei i polucheniya funktsional’nykh pokrytii iz metallicheskikh poroshkov [Potential of additive manufacturing technology for manufacturing complex-shaped parts and obtaining functional coatings from metal powders]. Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment, 2015, no. 10 (724), pp. 5–10. 4. Metel A., Tarasova T., Gutsaliuk E., Khmyrov R., Egorov S., Grigoriev S. Possibilities of additive technologies for the manufacturing of tooling from corrosion-resistant steels in order to protect parts surfaces from thermochemical treatment. Metals, 2021, vol. 11 (10), p. 1551. DOI: 10.3390/met11101551. 5. Magnien J., Cosemans P., Nutal N., Kairet T. Current surface issues in additive manufacturing. Plasma Processes and Polymers, 2020, vol. 17 (1), p. 1900154. DOI: 10.1002/ppap.201900154. 6. Tarasova T.V., Nazarov A.P., Prokof’ev M.V. Eff ect of the regimes of selective laser melting on the structure and physicomechanical properties of cobalt-base superalloys. The Physics of Metals and Metallography, 2015, vol. 116, pp. 601–605. DOI: 10.1134/S0031918X15060101. 7. Aleksandrov V.A., Fatyukhin D.S., Sundukov S.K., Filatova A.A. Ultrasonic methods for improving object surface quality prepared by corrosion-resistant steel powder selective laser melting. Metal Science and Heat Treatment, 2018, vol. 60, pp. 381–386. DOI: 10.1007/s11041-018-0287-1. 8. Konov S.G., Kotoban D.V., Sundukov S.K., Fatyukhin D.S. Perspektivy primeneniya ul’trazvukovykh tekhnologii v additivnom proizvodstve [Prospects for the application of ultrasonic technology in additive manufacturing]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2015, no. 9 (51), pp. 28–34. 9. Tang C., Tan J.L., Wong C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser melting. International Journal of Heat and Mass Transfer, 2018, vol. 126, pt. B, pp. 957–968. DOI: 10.1016/j.ijheatmasstransfer.2018.06.073. 10. Zhang B., Li Y., Bai Q. Defect formation mechanisms in selective laser melting: a review. Chinese Journal of Mechanical Engineering, 2017, vol. 30, pp. 515–527. DOI: 10.1007/s10033-017-0121-5. 11. NasabM.H., Gastaldi D., LecisN.,VedaniM. Onmorphological surface features of the parts printed by selective laser melting (SLM). Additive Manufacturing, 2018, vol. 24, pp. 373–377. DOI: 10.1016/j.addma.2018.10.011. 12. Singla A.K., Banerjee M., Sharma A., Singh J., Bansal A., Gupta M.K., Khanna N., Shahi A.S., Goyal D.K. Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments. Journal of Manufacturing Processes, 2021, vol. 64, pp. 161–187. DOI: 10.1016/j.jmapro.2021.01.009. 13. Bai Y., Zhao C., Wang D., Wang H. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting. Journal of Materials Processing Technology, 2022, vol. 299, p. 117328. DOI: 10.1016/j.jmatprotec.2021.117328. 14. Li C., Liu D., Liu G., Liu Sh., Jin X., Bai Y. Surface characteristics enhancement and morphology evolution of selective-laser-melting (SLM) fabricated stainless steel 316L by laser polishing. Optics & Laser Technology, 2023, vol. 162, p. 109246. DOI: 10.1016/j.optlastec.2023.109246. 15. Shi X., Yan C., Feng W., Zhang Y., Leng Z. Eff ect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting. Optics & Laser Technology, 2020, vol. 132, p. 106471. DOI: 10.1016/j.optlastec.2020.106471. 16. Giorleo L., Ceretti E., Giardini C. Ti surface laser polishing: eff ect of laser path and assist gas. Procedia CIRP, 2015, vol. 33, pp. 446–451. DOI: 10.1016/j.procir.2015.06.102. 17. Kumar A.Y., Bai Y., Eklund A., Williams C.B. The eff ects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing. Additive Manufacturing, 2018, vol. 24, pp. 115–124. DOI: 10.1016/j. addma.2018.09.021. 18. Popov V., Katz-Demyanetz A., Garkun A., Muller G., Strokin E., Rosenson H. Eff ect of Hot Isostatic Pressure treatment on the Electron-Beam Melted Ti-6Al-4V specimens. Procedia Manufacturing, 2018, vol. 21, pp. 125–132. DOI: 10.1016/j.promfg.2018.02.102. 19. Łyczkowska E., Szymczyk P., Dybała B., Chlebus E. Chemical polishing of scaff olds made of Ti–6Al–7Nb alloy by additive manufacturing. Archives of Civil and Mechanical Engineering, 2014, vol. 14 (4), pp. 586–594. DOI: 10.1016/j.acme.2014.03.001.

RkJQdWJsaXNoZXIy MTk0ODM1