OBRABOTKAMETALLOV Vol. 27 No. 2 2025 28 TECHNOLOGY 41. Xu Q., Qiu Z., Jiang D., Cai G., Yang X., Liu J., Li G. Surface properties of additively manufactured 316L steel subjected to ultrasonic rolling. Journal of Materials Engineering and Prformance, 2024, vol. 34 (2), pp. 1733– 1742. DOI: 10.1007/s11665-024-09173-4. 42. AmanovA., KarimbaevR.M. Eff ect of ultrasonic nanocrystal surfacemodifi cation temperature:microstructural evolution, mechanical properties and tribological behavior of silicon carbide manufactured by additive manufacturing. Surface and Coatings Technology, 2021, vol. 425, p. 127688. DOI: 10.1016/j.surfcoat.2021.127688. 43. Walker P., Malz S., Trudel E., Nosir S., ElSayed M.S.A., Kok L. Eff ects of ultrasonic impact treatment on the stress-controlled fatigue performance of additively manufactured DMLS Ti-6Al-4V alloy. Applied Sciences, 2019, vol. 9 (22), p. 4787. DOI: 10.3390/app9224787. 44. Maleki E., Bagherifard S., Unal O., Jam A., Shao S., Guagliano M., Shamsaei N. Superior eff ects of hybrid laser shock peening and ultrasonic nanocrystalline surface modifi cation on fatigue behavior of additive manufactured AlSi10Mg. Surface and Coatings Technology, 2023, vol. 463, p. 129512. DOI: 10.1016/j.surfcoat.2023.129512. 45. ZhaoW., LiuD., Chiang R., QinH., ZhangX.H., ZhangH., Liu J., Ren Z., Zhang R., Doll G.L., VasudevanV.K., Dong Y., Ye C. Eff ects of ultrasonic nanocrystal surface modifi cation on the surface integrity, microstructure, and wear resistance of 300M martensitic ultra-high strength steel. Journal of Materials Processing Technology, 2020, vol. 285, p. 116767. DOI: 10.1016/j.jmatprotec.2020.116767. 46. Teramachi A., Yan J. Improving the surface integrity of additive-manufactured metal parts by ultrasonic vibration-assisted burnishing. Journal of Micro and Nano-Manufacturing, 2019, vol. 7 (2), p. 024501. DOI: 10.1115/1.4043344. 47. Panin A.V., Kazachenok M.S., Dmitriev A.I., Nikonov A.Y., Perevalova O.B., Kazantseva L.A., Sinyakova E.A., Martynov S.A. The eff ect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension. Materials Science and Engineering: A, 2022, vol. 832, p. 142458. DOI: 10.1016/j.msea.2021.142458. 48. Rozenberg L.D. Fizika i tekhnika moshchnogo ul’trazvuka. T. 3. Fizicheskie osnovy ul’trazvukovoi tekhnologii [Physics and technology of high-power ultrasound. Vol. 3. Physical foundations of ultrasonic technology]. Moscow, Nauka Publ., 1970. 689 p. 49. Sundukov S.K. Osobennosti nalozheniya ul’trazvukovykh kolebanii v protsesse svarki [Features of the superposition of ultrasonic vibrations in the welding process]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 2, pp. 50–66. DOI: 10.17212/1994-63092022-24.2-50-66. 50. Prikhod’ko V.M. Ul’trazvukovye tekhnologii pri proizvodstve i remonte avtotraktornoi tekhniki [Ultrasonic technologies in the production and repair of automotive equipment]. Moscow, Tekhpoligraftsentr Publ., 2000. 252 p. ISBN 5-900095-16-9. 51. Fatyukhin D.S., Nigmetzyanov R.I., Prikhodko V.M., Sukhov A.V., Sundukov S.K. A comparison of the eff ects of ultrasonic cavitation on the surfaces of 45 and 40kh steels. Metals, 2022, vol. 12 (1), p. 138. DOI: 10.3390/ met12010138. Confl icts of Interest The authors declare no confl ict of interest. © 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1