Obrabotka Metallov 2025 Vol. 27 No. 2

OBRABOTKAMETALLOV Vol. 27 No. 2 2025 41 TECHNOLOGY 2. SellamiA., KchaouM., ElleuchR., CristolA.L., DesplanquesY. Study of the interaction betweenmicrostructure, mechanical and tribo-performance of a commercial brake lining material. Materials & Design, 2014, vol. 59, pp. 84– 93. DOI: 10.1016/j.matdes.2014.02.025. 3. Österle W., Dmitriev A.I. The role of solid lubricants for brake friction materials. Lubricants, 2016, vol. 4 (1), p. 5. DOI: 10.3390/lubricants4010005. 4. Liang Y., Wang W., Zhang Z., Xing H., Wang C., Zhang Z., Guan T., Gao D. Eff ect of material selection and surface texture on tribological properties of key friction pairs in water hydraulic axial piston pumps: a review. Lubricants, 2023, vol. 11 (8), p. 324. DOI: 10.3390/lubricants11080324. 5. Kumar M., Bijwe J. Studies on reduced scale tribometer to investigate the eff ects of metal additives on friction coeffi cient – temperature sensitivity in brake materials. Wear, 2010, vol. 269 (11–12), pp. 838–846. DOI: 10.1016/j. wear.2010.08.012. 6. Saff ar A., Shojaei A., Arjmand M. Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials. Wear, 2010, vol. 269 (1–2), pp. 145–151. DOI: 10.1016/j. wear.2010.03.021. 7. Aranganathan N., Mahale V., Bijwe J. Eff ects of aramid fi ber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests. Wear, 2016, vol. 354, pp. 69–77. DOI: 10.1016/j.wear.2016.03.002. 8. McElheny D., Frydman V., Frydman L. Asolid-state 13C NMR analysis of molecular dynamics in aramid polymers. Solid State Nuclear Magnetic Resonance, 2006, vol. 29 (1–3), pp. 132–141. DOI: 10.1016/j.ssnmr.2005.08.010. 9. Prasad V.V., Talupula S. A review on reinforcement of basalt and aramid (Kevlar 129) fi bers. Materials Today: Proceedings, 2018, vol. 5 (2), pp. 5993–5998. DOI: 10.1016/j.matpr.2017.12.202. 10. Xiao X., Yin Y., Bao J., Lu L., Feng X. Review on the friction and wear of brake materials. Advances in Mechanical Engineering, 2016, vol. 8 (5). DOI: 10.1177/1687814016647300. 11. Kumar M., Bijwe J. Composite friction materials based on metallic fi llers: sensitivity of μ to operating variables. Tribology International, 2011, vol. 44 (2), pp. 106–113. DOI: 10.1016/j.triboint.2010.09.013. 12. Kumar M., Bijwe J. NAO friction materials with various metal powders: tribological evaluation on full-scale inertia dynamometer. Wear, 2010, vol. 269 (11–12), pp. 826–837. DOI: 10.1016/j.wear.2010.08.011. 13. Bachchhav B.D., Hendre K.N. Wear performance of asbestos-free brake pad materials. Jordan Journal of Mechanical & Industrial Engineering, 2022, vol. 16 (4), pp. 459–469. 14. Prabhu T.R. Eff ect of bimodal size particles reinforcement on the wear, friction and mechanical properties of brake composites. Tribology-Materials, Surfaces & Interfaces, 2016, vol. 10 (4), pp. 163–171. DOI: 10.1080/17515 831.2016.1262587. 15. Singh T., Patnaik A., Chauhan R., Bíró I., Jánosi E., Fekete G. Performance assessment of phenolic-based non-asbestos organic brake friction composite materials with diff erent abrasives. Acta Polytechnica Hungarica, 2020, vol. 17 (5), pp. 49–67. DOI: 10.12700/APH.17.5.2020.5.3. 16. Matějka V., Leonardi M., Praus P., Straff elini G., Gialanella S. The role of graphitic carbon nitride in the formulation of copper-free friction composites designed for automotive brake pads. Metals, 2022, vol. 12 (1), p. 123. DOI: 10.3390/met12010123. 17. Park J., Gweon J., Seo H., Song W., Lee D., Choi J., Kim Y.C., Jang H. Eff ect of space fi llers in brake friction composites on airborne particle emission: a case study with BaSO4, Ca(OH)2, and CaCO3. Tribology International, 2022, vol. 165, p. 107334. DOI: 10.1016/j.triboint.2021.107334. 18. Deshpande A.R., Kulkarni A.P., Wasatkar N., Gajalkar V., Abdullah M. Prediction of wear rate of glass-fi lled PTFE composites based on machine learning approaches. Polymers, 2024, vol. 16 (18), p. 2666. DOI: 10.3390/ polym16182666. 19. Dama Y., Jogi B., Pawade R., Kulkarni A. Vliyanie napravleniya pechati na kharakter iznosa PLAbiomateriala, poluchennogo metodom FDM: issledovanie dlya implantata tazobedrennogo sustava [Impact of print orientation on wear behavior in FDM printed PLA Biomaterial: Study for hip-joint implant]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 4, pp. 19–40. DOI: 10.17212/1994-6309-2024-26.4-19-40. 20. Hendre K., Bachchhav B. Tribological behavior of non-asbestos brake pad material. Materials Today: Proceedings, 2021, vol. 38, pp. 2549–2554. DOI: 10.1016/j.matpr.2020.07.560. 21. Suresh V., Vikram P., Palanivel R., Laubscher R.F. Mechanical and wear behavior of LM25 aluminium matrix hybrid composite reinforced with boron carbide, graphite and iron oxide. Materials Today: Proceedings, 2018, vol. 5 (14), pp. 27852–27860. DOI: 10.1016/j.matpr.2018.10.023.

RkJQdWJsaXNoZXIy MTk0ODM1