OBRABOTKAMETALLOV Vol. 27 No. 2 2025 55 TECHNOLOGY 3. Ezugwu E.O., Wang Z.M. Titanium alloys and their machinability – a review. Journal of Materials Processing Technology, 1997, vol. 68 (3), pp. 262–274. DOI: 10.1016/S0924-0136(96)00030-1. 4. Pasang T., Tao Y., Azizi M., Kamiya O., Mizutani M., Misiolek W. Welding of titanium alloys. MATEC Web of Conferences, 2017, vol. 123, pp. 1–8. DOI: 10.1051/matecconf/201712300001. 5. Veiga C., Davim J.P., Loureiro A. Properties and applications of titanium alloys: a brief review. Reviews on Advanced Materials Science, 2012, vol. 32 (2), pp. 133–148. 6. Kim Y.-W., Dimiduk D.M. Progress in the understanding of gamma titanium aluminides. JOM, 1991, vol. 43, pp. 40–47. 7. ShagievM.R., Galeyev R.M., Valiakhmetov O.R. Ti2AlNb-based intermetallic alloys and composites. Materials Physics and Mechanics, 2017, vol. 33 (1), pp. 12–18. DOI: 10.18720/MPM.3312017_2. 8. Nandy T.K., Banerjee D. Creep of the orthorhombic phase based on the intermetallic Ti2AlNb. Intermetallics, 2000, vol. 8 (8), pp. 915–928. DOI: 10.1016/S0966-9795(00)00059-5. 9. Dadé M., Esin V.A., Nazé L., Sallot P. Short- and long-term oxidation behaviour of an advanced Ti2AlNb alloy. Corrosion Science, 2019, vol. 148, pp. 379–387. DOI: 10.1016/j.corsci.2018.11.036. 10. Xu J., He L., Su H., Zhang L. Tool wear investigation in high-pressure jet coolant assisted machining Ti2AlNb intermetallic alloys based on FEM. International Journal of Lightweight Materials and Manufacture, 2018, vol. 1 (4), pp. 219–228. DOI: 10.1016/j.ijlmm.2018.08.007. 11. Chen W., Li J.W., Xu L., Lu B. Development of Ti2AlNb alloys: opportunities and challenges. AM&P Technical Articles, 2014, vol. 172 (5), pp. 23–27. DOI: 10.31399/asm.amp.2014-05.p023. 12. Panov D.O., Naumov S.V., Sokolovsky V.S., Volokitina E.I., Kashaev N., Ventzke V., Dinse R., Riekehr S., Povolyaeva E.A., Alekseev E.B., Nochovnaya N.A., Zherebtsov S.V., Salishchev G.A. Cracking of Ti2AlNb-based alloy after laser beam welding. IOP Conference Series: Materials Science and Engineering, 2021, vol. 1014, p. 012035. DOI: 10.1088/1757-899X/1014/1/012035. 13. Li Y.-J., Wu Ai-P., Li Q., Zhao Y., Zhu R.-C., Wang G.-Q. Mechanism of reheat cracking in electron beam welded Ti2AlNb alloys. Transactions of Nonferrous Metals Society of China, 2019, vol. 29 (9), pp. 1873–1881. DOI: 10.1016/S1003-6326(19)65095-8. 14. Cai D., Chen J., Mao X., Hao C. Reheat cracking in Ti2AlNb alloy resistance spot weldments. Intermetallics, 2013, vol. 38, pp. 63–69. DOI: 10.1016/j.intermet.2013.02.013. 15. Li Y., Zhao Y., Li Q., Wu A., Zhu R., Wang G. Eff ects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy joints. Materials & Design, 2017, vol. 114, pp. 226–233. DOI: 10.1016/j. matdes.2016.11.083. 16. Shao L., Cui E. Joining of Ti-22Al-25Nb alloy using diff erent welding methods. Materials China, 2019, vol. 38 (3), pp. 286–290. DOI: 10.7502/j.issn.1674-3962.2019.03.11. 17. PanovD., Naumov S., StepanovN., SokolovskyV., Volokitina E., KashaevN., VentzkeV., Dinse R., Riekehr S., Povolyaeva E., Nochovnaya N., Alekseev E., Zherebtsov S., Salishchev G. Eff ect of pre-heating and post-weld heat treatment on structure and mechanical properties of laser beam-welded Ti2AlNb-based joints. Intermetallics, 2022, vol. 143, p. 107466. DOI: 10.1016/j.intermet.2022.107466. 18. Zou J., Li H. Review on weldability of Ti2AlNb-based alloy. Materials China, 2019, vol. 38 (7), pp. 710–716. DOI: 10.7502/j.issn.1674-3962.201803012. 19. Liu X., Wu S., Ji Y., Shao L., Zhao H., Wan X. Ultrasonic frequency pulse tungsten inert gas welding of Ti2AlNb-based alloy. Xiyou Jinshu / Chinese Journal of Rare Metals, 2014, vol. 38 (4), pp. 541–547. DOI: 10.13373/j. cnki.cjrm.2014.04.001. 20. Lu B., Yin J., Wang Y., Yang R. Gas tungsten arc welding of Ti2AlNb based alloy sheet. Ti-2011: Proceedings of the 12th World Conference on Titanium. Beijing, 2012, vol. 1, pp. 816–818. 21. Kuang Y., Hu J., Su W., Zhu Z., Liao H., Wang Z. Elimination of pores and microstructural characterization in Ti-6Al-4V alloy welds using fast-frequency double pulse TIG welding. Materials Today Communications, 2024, vol. 41, p. 110516. DOI: 10.1016/j.mtcomm.2024.110516. 22. Wang Z., Jiang D., Wu J., Xu M. A review on high-frequency pulsed arc welding. Journal of Manufacturing Processes, 2020, vol. 60, pp. 503–519. DOI: 10.1016/j.jmapro.2020.10.054. 23. Karpagaraj A., Siva Shanmugam N., Sankaranarayanasamy K. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets. Materials Science and Engineering: A, 2015, vol. 640, pp. 180–189. DOI: 10.1016/j.msea.2015.05.056.
RkJQdWJsaXNoZXIy MTk0ODM1