Obrabotka Metallov 2025 Vol. 27 No. 2

OBRABOTKAMETALLOV Vol. 27 No. 2 2025 88 TECHNOLOGY 21. Majumder H., Khan A., Naik D.K., Kumar C.S. Machinability assessment of shape memory alloy nitinol during WEDM operation: application potential of Taguchi based AHP–DFA technique. Surface Review and Letters, 2022, vol. 29 (01), p. 2250002. DOI: 10.1142/S0218625X22500020. 22. Gupta D.K., Dubey A.K. Multi process parameters optimization of Wire-EDM on shape memory alloy (Ni54.1Ti) using Taguchi approach. Materials Today: Proceedings, 2021, vol. 44, pp. 1423–1427. DOI: 10.1016/j. matpr.2020.11.628. 23. Gangele A., Mishra A. Surface roughness optimization during machining of NiTi shape memory alloy by EDM through Taguchi’s technique. Materials Today: Proceedings, 2020, vol. 29, pp. 343–347. DOI: 10.1016/j. matpr.2020.07.287. 24. Gaikwad V.S., Jatti V.S., Pawar P.J., Nandurkar K.N. Multi-objective optimization of electrical discharge machining process during machining of NiTi alloy using Taguchi and utility concept. Techno-Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications. Springer International Publishing, 2020, vol. 2, pp. 479–489. DOI: 10.1007/978-3-030-16962-6_49. 25. Güven S., Yilmaz M., Gökkaya H., Nas E. Determination of the optimum conditions for machining NiTi shape memory alloys by electrical discharge machining. Journal of the Institution of Engineers (India): Series C, 2024, vol. 105 (5), pp. 1035–1046. DOI: 10.1007/s40032-024-01099-z. 26. Altas E., Gokkaya H., Karatas M.A., Ozkan D. Analysis of surface roughness and fl ank wear using the Taguchi method in milling of NiTi shape memory alloy with uncoated tools. Coatings, 2020, vol. 10 (12), p. 1259. DOI: 10.3390/coatings10121259. 27. Singh R., Singh R.P., Trehan R. State of the art in processing of shape memory alloys with electrical discharge machining: a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, vol. 235 (3), pp. 333–366. DOI: 10.1177/0954405420958771. 28. Saoud F.B., Korkmaz M.E. A review on machinability of shape memory alloys through traditional and non-traditional machining processes: a review. İmalat Teknolojileri ve Uygulamaları, 2022, vol. 3 (1), pp. 14–32. DOI: 10.52795/mateca.1080941. 29. Al-Mousawi M.A., Al-Shafaie S.H., Khulief Z.T. Modeling and analysis of process parameters in EDM of Ni35Ti35Zr15Cu10Sn5 high-temperature high entropy shape memory alloy by RSM approach. Manufacturing Review, 2024, vol. 11, p. 4. DOI: 10.1051/mfreview/2024002. 30. Gaikwad V., Jatti V.S. Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method. Journal of King Saud University – Engineering Sciences, 2018, vol. 30 (3), pp. 266–272. DOI: 10.1016/j.jksues.2016.04.003. 31. Sawant D.A., Jatti V.S., Mishra A., Sefene E.M., Jatti A.V. Surface roughness and surface crack length prediction using supervised machine learning-based approach of electrical discharge machining of deep cryogenically treated NiTi, NiCu, and BeCu alloys. The International Journal of Advanced Manufacturing Technology, 2023, vol. 128 (11–12), pp. 5595–5612. DOI: 10.1007/s00170-023-12269-1. 32. Jatti V.S., SinghT.P. Optimization of tool wear rate during electrical discharge machining of advancedmaterials using Taguchi analysis. WSEAS Transactions on Applied and Theoretical Mechanics, 2016, vol. 11, pp. 44–53. 33. Sawant D., Bulakh R., Jatti V., Chinchanikar S., MishraA., Sefene E.M. Issledovanie elektroerozionnoi obrabotki kriogenno obrabotannykh berillievo-mednykh splavov (BeCu) [Investigation on the electrical discharge machining of cryogenic treated beryllium copper (BeCu) alloys]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 1, pp. 175–193. DOI: 10.17212/1994-6309-2024-26.1-175-193. 34. Bagane S., Jatti V.S., Singh T.P. Machinability study of beryllium copper by powder mixed electric discharge machining. Applied Mechanics and Materials, 2015, vol. 787, pp. 376–380. DOI: 10.4028/www.scientifi c.net/ AMM.787.376. 35. Sankar V., Arravind R., Manikandan D. Material synthesis, characterization, and machining performance of stir cast beryllium copper alloy composites. Transactions of the Canadian Society for Mechanical Engineering, 2018, vol. 43 (2), pp. 143–152. DOI: 10.1139/tcsme-2018-0103. 36. Jatti V.S., Khedkar N.K., Jatti V.S., Dhall P. Investigating the eff ect of cryogenic treatment of workpieces and tools on electrical discharge machining performance. AIMSMaterials Science, 2022, vol. 9 (6). DOI: 10.3934/matersci.2022051. Confl icts of Interest The authors declare no confl ict of interest. © 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1