OBRABOTKAMETALLOV Vol. 27 No. 4 2025 143 TECHNOLOGY Processing. – 2024. – Vol. 8 (2). – P. 44. – DOI: 10.3390/ jmmp8020044. 4. Adaptive variable design algorithm for improving topology optimization in additive manufacturing guided design / A.V. Morillas, J.M. Alonso, A.B. Caballero, C.C. Sisamón, A. Ceruti // Inventions. – 2024. – Vol. 9 (70). – P. 9040070. – DOI: 10.3390/ inventions9040070. 5. Sambo A.M., Younas M., Njuguna J. Insights into machining techniques for additively manufactured Ti6Al4V alloy: A comprehensive review // Applied Sciences. – 2024. – Vol. 14 (22). – P. 10340. – DOI: 10.3390/ app142210340. 6. A review of topology optimization for additive manufacturing: Status and challenges / J. Zhu, H. Zhou, C. Wang, L. Zhou, S. Yuan, W. Zhang // Chinese Journal of Aeronautics. – 2021. – Vol. 65. – P. 91–110. – DOI: 10.1016/j.cja.2020.09.020. 7. What is the economic feasibility of manufacturing a metal-metal- polymer composite part compared to other technologies? / N. Lubimyi, V. Voronenko, A. Polshin, M. Gerasimov, S. Antsiferov, O.K. Öztürk, B. Chetverikov, A. Tikhonov, V. Ryazantsev, V. Shumyacher, N. Melentiev // Australian Journal of Mechanical Engineering. – 2022. – Vol. 22 (2). – P. 314–325. – DOI: 10.1080/14484846.2022.2094533. 8. Малышев В.Ф., Дьяченко С.В. Резание труднообрабатываемых сталей. – М.: Машиностроение, 2010. – 248 с. 9. Трент Э.М., Райт П.К. Резание металлов. – М.: Машиностроение, 2001. – 385 с. 10. Eff ect of the cutting condition and the reinforcement phase on the thermal load of the workpiece when dry turning aluminum metal matrix composites / J.C. Aurich, M. Zimmermann, S. Schindler, P. Steinmann // The International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 82. – P. 1317–1334. – DOI: 10.1007/s00170-015-7444-0. 11. Fixturing technology and system for thin-walled parts machining: a review / H. Liu, C. Wang, T. Li, Q. Bo, K. Liu, Y. Wang // Frontiers of Mechanical Engineering. – 2023. – Vol. 17 (4). – P. 55. – DOI: 10.1007/ s11465-022-0711-5. 12. Park J.-K., Lee C.-M., Kim D.-H. Investigation on the thermal eff ects of WC-Co turning inserts deposited by additive manufacturing of titanium alloy powder // Metals. – 2021. – Vol. 11 (11). – P. 1705. – DOI: 10.3390/ met11111705. 13. Sultana M.N., Dhar N.R., Zaman P.B. A review on diff erent cooling/lubrication techniques in metal cutting // American Journal of Mechanics and Applications. – 2019. – Vol. 7. – P. 71–87. – DOI: 10.11648/j. ajma.20190704.11. 14. Machining technology and PVD coatings for milling thin structural parts of Inconel 718 / M. Schiffl er, T. Maul, F. Welzel, H. Frank, T. Cselle, A. Lümkemann // SSRN Electronic Journal. – 2020. – Vol. 7. – P. 55–63. – DOI: 10.2139/ssrn.3724144. 15. Taufi k M., Jain P.K. A study of build edge profi le for prediction of surface rough-ness in fused deposition modeling // Journal of Manufacturing Science and Engineering. – 2016. – Vol. 138 (6). – P. 061002. – DOI: 10.1115/1.4032193. 16. Research on the fabricating quality optimization of the overhanging surface in SLM process / D. Wang, Y. Yang, Z. Yi, X. Su // The International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 65. – P. 1471–1484. – DOI: 10.1007/s00170-012-4271-4. 17. Хоанг В.Ч. Практические вопросы исследования температуры резания при точении // Известия Тульского государственного университета. Технические науки. – 2015. – № 7-1. – С. 78–84. 18. ЗАО «Металлополимерные материалы ЛЕО». Технические условия ТУ 2257-002-48460567-00. Металлополимер «Ферро-хром». – М., 2009. – URL: http://www.leopolimer.ru/ (дата обращения: 10.11.2025). 19. Целиков П.В., Кисель А.Г. Исследование изнашивания режущего инструмента при точении сплава ТН1 // Системы. Методы. Технологии. – 2025. – № 2 (66). – С. 43–49. – DOI: 10.18324/20775415-2025-2-43-49. 20. Бордачев Е.В., Лапшин В.П. Математическое моделирование те мпературы в зоне контакта инструмента и изделия при токарной обработке металлов // Вестник Донского государственного технического университета. – 2019. – № 2. – С. 130–137. – DOI: 10.23947/1992-5980-2019-19-2-130-137. 21. Jones T., Cao Y. Tool wear prediction based on multisensor data fusion and machine learning // International Journal of Advanced Manufacturing Technology. – 2025. – Vol. 137. – P. 5213–5225. – DOI: 10.1007/ s00170-025-15472-4. 22. Digital twin-driven tool wear monitoring and predicting method for the turning process / K. Zhuang, Z. Shi, Y. Sun, Z. Gao, L. Wang // Symmetry. – 2021. – Vol. 13. – P. 1438. – DOI: 10.3390/sym13081438. 23. Topology optimization methods for additive manufacturing: a review / I.E. Khadiri, M. Zemzami, N. Hmina, M. Lagache, S. Belhouideg // International Journal for Simulation and Multidisciplinary Design Optimization. – 2023. – Vol. 14. – P. 12. – DOI: 10.1051/ smdo/2023015. 24. Analysis of the eff ect of porosity on thermal conductivity with consideration of the internal structure of arbolite / N. Zhangabay, D. Chepela, T. Tursunkululy, A. Zhang-abay, A. Kolesnikov // Construction Materials and Products. – 2024. – Vol. 7 (3). – P. 1–12. – DOI: 10.58224/2618-7183-2024-7-3-4.
RkJQdWJsaXNoZXIy MTk0ODM1