Obrabotka Metallov 2025 Vol. 27 No. 4

OBRABOTKAMETALLOV Vol. 27 No. 4 2025 147 TECHNOLOGY 21. Jones T., Cao Y. Tool wear prediction based on multisensor data fusion and machine learning. International Journal of Advanced Manufacturing Technology, 2025, vol. 137, pp. 5213–5225. DOI: 10.1007/s00170-02515472-4. 22. Zhuang K., Shi Z., Sun Y., Gao Z., Wang L. Digital twin-driven tool wear monitoring and predicting method for the turning process. Symmetry, 2021, vol. 13, p. 1438. DOI: 10.3390/sym13081438. 23. Khadiri I.E., Zemzami M., Hmina N., Lagache M., Belhouideg S. Topology optimization methods for additive manufacturing: a review. International Journal for Simulation and Multidisciplinary Design Optimization, 2023, vol. 14, p. 12. DOI: 10.1051/smdo/2023015. 24. Zhangabay N., Chepela D., Tursunkululy T., Zhangabay A., Kolesnikov A. Analysis of the eff ect of porosity on thermal conductivity with consideration of the internal structure of arbolite. Construction Materials and Products, 2024, vol. 7 (3), pp. 1–12. DOI: 10.58224/2618-7183-2024-7-3-4. 25. Andreacola F.R., Capasso I., Langella A., Brando G. 3D-printed metals: Process parameters eff ects on mechanical properties of 17-4 PH stainless steel. Heliyon, 2023, vol. 9 (7), p. 17698. DOI: 10.1016/j.heliyon.2023. e17698. 26. Lisyatnikov M.S., Chibrikin D.A., Prusov E.S., Roshchina S.I. Mechanical characteristics of polymer composites based on epoxy resins with silicon carbide. Construction Materials and Products, 2024, vol. 7 (5). DOI: 10.58224/2618-7183-2024-7-5-3. Confl icts of Interest The authors declare no confl ict of interest. © 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1