Obrabotka Metallov 2025 Vol. 27 No. 4

OBRABOTKAMETALLOV Vol. 27 No. 4 2025 178 EQUIPMENT. INSTRUMENTS by fused deposition modelling (FDM) followed by a novel metallization method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2023, vol. 238 (2), pp. 209–222. DOI: 10.1177/09544054221151093. 75. Shirbhate N.J., Vinchurkar S.M., Borade A.B. FDM technology for EDM electrode fabrication: progress, prospects, and perspectives. International Journal of Mechanical Engineering, 2024, vol. 11 (9), pp. 11–27. DOI: 10.14445/23488360/IJME-V11I9P102. 76. Wang J., Zhu R., Liu Y., Zhang L. Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization. Advanced Powder Materials, 2023, vol. 2 (4). DOI: 10.1016/j.apmate.2023.100137. 77. Prakash C., Kansal H.K., Pabla B., Puri S., Aggarwal A. Electric discharge machining – A potential choice for surface modifi cation of metallic implants for orthopedic applications: a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, vol. 230 (2), pp. 331–353. DOI: 10.1177/0954405415579113. 78. Fefar S.D., Karajagikar M.J.S. Study and analysis of metallized electrode fabricated with FDM rapid prototyping technique for electro discharge machining (EDM). Proceedings of the 5th International & 26th All India Manufacturing Technology Design and Research Conference (AIMTDR 2014), 2014, pp. 37–42. 79. Sridhar S., Valeti S.V., Koti V., Sathish S., Chand R.R., Sivakumar N.S., Mahesh M., Subbiah R., Veerappan G. Surface modifi cation of strenx 900 steel using electrical discharge alloying process with Cu-10Ni-Crx powder metallurgy sintered electrode. Materials Research, 2022, vol. 25. DOI: 10.1590/1980-5373-MR-2021-0390. 80. Danade U.A., Londhe S.D., Metkar R.M. Machining performance of 3D-printed ABS electrode coated with copper in EDM. Rapid Prototyping Journal, 2019, vol. 25 (7), pp. 1224–1231. DOI: 10.1108/RPJ-11-2018-0297. 81. Dürr H., Pilz R., Eleser N.S. Rapid tooling of EDM electrodes by means of selective laser sintering. Computers in Industry, 1999, vol. 39 (1), pp. 35–45. DOI: 10.1016/S0166-3615(98)00123-7. 82. Amorim F.L., Lohrengel A., Müller N., Schäfer G., Czelusniak T. Performance of sinking EDM electrodes made by selective laser sintering technique. The International Journal of Advanced Manufacturing Technology, 2013, vol. 65 (9–12), pp. 1423–1428. DOI: 10.1007/s00170-012-4267-0. 83. Sahu A., Mahapatra S., Patterson A., Leite M., Peças P., Singh Y., Sahoo S. Electro-discharge machining using copper-coated additively-manufactured AlSi10Mg electrodes. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2024, vol. 239 (8), pp. 1462–1471. DOI: 10.1177/14644207241293919. 84. Mohije R., Titre H., Gohil V., Meshram D.B. A study in EDM electrode manufacturing using additive manufacturing. Materials Today: Proceedings, 2023. DOI: 10.1016/j.matpr.2023.01.044. 85. Amorim F.L., Czelusniak T., Higa C.F. Producing sinking EDM electrodes using selective laser sintering technique. 7th Brazilian Congress on Manufacturing Engineering. Penedo, Brazil, 2013, pp. 1–10. 86. Torres A., Luis C.J., Puertas I. Analysis of the infl uence of EDM parameters on surface fi nish, material removal rate, and electrode wear of an INCONEL 600 alloy. The International Journal of Advanced Manufacturing Technology, 2015, vol. 80 (1–4), pp. 123–140. DOI: 10.1007/s00170-015-6974-9. 87. Amorim F.L., Lohrengel A., Schäfer G., Czelusniak T. A study on the SLS manufacturing and experimenting of TiB2-CuNi EDM electrodes. Rapid Prototyping Journal, 2013, vol. 19 (6), pp. 418–429. DOI: 10.1108/RPJ-032012-0019. 88. Czelusniak T., Amorim F.L., Higa C.F., Lohrengel A. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. International Journal of Advanced Manufacturing Technology, 2014, vol. 72 (9), pp. 1503–1512. DOI: 10.1007/s00170-014-5765-z. 89. Harris R.A., Hague R.J.M., Dickens P.M. The structure of parts produced by stereolithography injection mould tools and the eff ect on part shrinkage. International Journal of Machine Tools and Manufacture, 2004, vol. 44 (1), pp. 59–64. DOI: 10.1016/j.ijmachtools.2003.08.007. 90. Harris R.A., Newlyn H.A., Dickens P.M. Part shrinkage anomalies from stereolithography injection mould tooling. International Journal of Machine Tools and Manufacture, 2003, vol. 43 (9), pp. 879–887. DOI: 10.1016/ S0890-6955(03)00080-4. 91. Noguchi H., Nakagawa T. Manufacturing of high precision forming tool transferred from laser stereolithography models by powder casting method. Computers in Industry, 1999, vol. 39 (1), pp. 55–60. 92. Chan S.F., Law C.K., Wong T.T. Re-engineering the roto-casting mould making process. Journal of Materials Processing Technology, 2003, vol. 139 (1–3), pp. 527–534. DOI: 10.1016/S0924-0136(03)00532-6. 93. Leu M.C., Yang B., Yao W. Feasibility study of EDM tooling using metalized stereolithography models. Society of Manufacturing Engineers (SME) Engineering Technical Paper. MR98-180. SME, 1998, pp. 1–6.

RkJQdWJsaXNoZXIy MTk0ODM1