OBRABOTKAMETALLOV Vol. 27 No. 4 2025 193 EQUIPMENT. INSTRUMENTS 5. Li Y., Shi Y., Lu Y., Li X., Zhou J., Zadpoor A.A., Wang L. Additive manufacturing of vascular stents. Acta Biomaterialia, 2023, vol. 167, pp. 16–37. DOI: 10.1016/j.actbio.2023.06.014. 6. Wang Y., Yan C., Mei D., Li Y., Sheng K., Wang J., Wang L., Zhu S., Guan S. Optimized structure design of asymmetrical Mg alloy cerebrovascular stent with high fl exibility. Smart Materials in Manufacturing, 2024, vol. 2, p. 100040. DOI: 10.1016/j.smmf.2023.100040. 7. Khalaj R., Tabriz A.G., Junqueira L.A., Okereke M.I., Douroumis D. 3D printed stents using fused deposition method. Journal of Drug Delivery Science and Technology, 2024, vol. 97, p. 105724. DOI: 10.1016/j. jddst.2024.105724. 8. Demir A.G., Previtali B. Lasers in the manufacturing of cardiovascular metallic stents: Subtractive and additive processes with a digital tool. Procedia Computer Science, 2023, vol. 217, pp. 604–613. DOI: 10.1016/j. procs.2022.12.256. 9. Guerra A.J., San J., Ciurana J. Fabrication of PCL/PLA composite tube for stent manufacturing. Procedia CIRP, 2017, vol. 65, pp. 231–235. DOI: 10.1016/j.procir.2017.03.339. 10. Chanmanwar R.M., Balasubramaniam R., Wankhade L.N. Application of manufacturing of microfl uidic devices: review. International Journal of Modern Engineering Research, 2013, vol. 3 (2), pp. 849–856. 11. Çakır O. Etchants for chemical machining of aluminium and its alloys. Acta Physica Polonica A, 2019, vol. 135 (4), pp. 586–587. DOI: 10.12693/APhysPolA.135.586. 12. Tehrani F.A., Imanian E. Anew etchant for the chemical machining of St304. Journal of Materials Processing Technology, 2004, vol. 149 (1–3), pp. 404–408. DOI: 10.1016/j.jmatprotec.2004.02.055. 13. Allen D., Almond H. Characterisation of aqueous ferric chloride etchants used in industrial photochemical machining. Journal of Materials Processing Technology, 2004, vol. 149 (1–3), pp. 238–245. DOI: 10.1016/j. jmatprotec.2004.02.044. 14. Cakir O. Chemical etching of aluminum. Journal of Materials Processing Technology, 2008, vol. 199 (1–3), pp. 337–340. DOI: 10.1016/j.jmatprotec.2007.08.012. 15. Agrawal D., Kamble D. Optimization of photochemical machining process parameters for manufacturing microfl uidic channel. Materials and Manufacturing Processes, 2019, vol. 34 (1), pp. 1–7. DOI: 10.1080/10426914. 2018.1512115. 16. Wangikar S.S., Patowari P.K., Misra R.D. Eff ect of process parameters and optimization for photochemical machining of brass and German silver. Materials and Manufacturing Processes, 2016, vol. 32 (15), pp. 1747–1755. DOI: 10.1080/10426914.2016.1244848. 17. Jadhav P.K., Sahai R.S.N., Solanke S., Gawande S.H. Multi-objective optimization of EN19 steel milling parameters using Taguchi, ANOVA, and TOPSIS approach. Journal of Alloys and Metallurgical Systems, 2024, vol. 7, p. 100102. DOI: 10.1016/j.jalmes.2024.100102. 18. Jatti V.S., Singarajan V., Saiyathibrahim A., Jatti V.S., Krishnan M.R., Jatti S.V. Enhancement of EDM performance for NiTi, NiCu, and BeCu alloys using a multi-criteria approach based on utility function. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2025, vol. 27, no. 2, pp. 57–88. DOI: 10.17212/1994-6309-2025-27.2-57-88. (In Russian). 19. Anita J., Das R., Pradhan M.K. Multi-objective optimization of electrical discharge machining processes using artifi cial neural network. Jordan Journal of Mechanical and Industrial Engineering, 2016, vol. 10 (1), pp. 11–18. 20. Ji H., Zhang W., Li Z., Chai M., Wang Y. Experimental study of NiTi alloy cardiovascular stent formed via SLM. Materials Today Communications, 2024, vol. 41, p. 110426. DOI: 10.1016/j.mtcomm.2024.110426. Confl icts of Interest The authors declare no confl ict of interest. © 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1