Obrabotka Metallov 2025 Vol. 27 No. 4

OBRABOTKAMETALLOV Vol. 27 No. 4 2025 235 MATERIAL SCIENCE 7. Для обеспечения максимальной прочности с приемлемой пластичностью можно использовать низкотемпературный отжиг после интенсивной пластической деформации. Это обеспечит максимальную прочность при частичном восстановлении пластичности. Материал в таком структурном состоянии может быть рекомендован для высоконагруженных конструкционных элементов, испытывающих статические и умеренные динамические нагрузки, где важна прочность, а износостойкость менее критична. Список литературы 1. Осинцев О.Е., Федоров В.Н. Медь и медные сплавы. Отечественные и зарубежные марки: справочник. – 2-е изд., перераб. и доп. – М.: Инновационное машиностроение, 2016. – 360 с. – ISBN 978-59907638-3-8. 2. CALPHAD-type reassessment of Cu-Si and full assessment of the Al-Cu-Si systems / A. Kroupa, O. Zobac, A. Zemanova, K.W. Richter // Journal of Phase Equilibria and Diff usion. – 2024. – Vol. 45. – P. 1206– 1243. – DOI: 10.1007/s11669-024-01160-5. 3. Correlation of microstructure with mechanical property of Cu-Si-Mn alloys / S.K. Shee, H. Pal, S.K. Pradhan, M. De // Materials Engineering. – 1996. – Vol. 7 (4). – P. 431–442. 4. Nnakwo K.C., Mbah C.N., Daniel-Mkpume C.C. Investigation of the structural sensitive behavior of Cu3Si-xMn ternary alloys // Journal of King Saud University – Science. – 2019. – Vol. 31. – P. 1056–1063. – DOI: 10.1016/j.jksus.2019.01.001. 5. Chromik R.R., Neils W.K., Cotts E.J. Thermodynamic and kinetic study of solid state reactions in the Cu–Si system // Journal of Applied Physics. – 1999. – Vol. 86. – P. 4273–4281. – DOI: 10.1063/1.371357. 6. Eff ect of solutionizing heat treatment on the structure and mechanical properties of silicon bronze (Cu-10wt%Si-2wt%Ni) / U.E. Ezeobi, C.N. Nwambu, E.E. Nnuka, B.M. Bosan // Archive of Biomedical Science and Engineering. – 2024. – Vol. 10. – P. 017–022. – DOI: 10.17352/abse.000033. 7. Phase formation of rapidly quenched Cu–Si alloys / N. Mattern, R. Seyrich, L. Wilde, C. Baehtz, M. Knapp, J. Acker // Journal of Alloys and Compounds. – 2007. – Vol. 429. – P. 211–215. – DOI: 10.1016/j. jallcom.2006.04.046. 8. Micro-, meso- and macrostructural design of bulk metallic and polymetallic materials by wire-feed electron-beam additive manufacturing / E.A. Kolubaev, V.E. Rubtsov, A.V. Chumaevsky, E.G. Astafurova // Physical Mesomechanics. – 2022. – Vol. 25 (6). – P. 479– 491. – DOI: 10.1134/S1029959922060017. 9. High strength silicon bronze (C65500) obtained by hydrostatic extrusion / M. Kulczyk, J. Skiba, S. Przybysz, W. Pachla, P. Bazarnik, M. Lewandowska // Archives of Metallurgy and Materials. – 2012. – Vol. 57. – P. 859–862. – DOI: 10.2478/v10172-012-0094-4. 10. Study of properties and structure of silicon bronze CuSi3Mn1 (C65500) wire at various stages of its production by continuous casting and subsequent drawing / S.A. Tavolzhanskii, E.D. Vedenkin, I.V. Plisetskaya, A.A. Nikitina // Metallurgist. – 2022. – Vol. 66. – P. 962–969. – DOI: 10.1007/s11015-02201408-w. 11. The eff ect of heat input, annealing, and deformation treatment on structure and mechanical properties of electron beam additive manufactured (EBAM) silicon bronze / A. Filippov, N. Shamarin, E. Moskvichev, N. Savchenko, E. Kolubaev, E. Khoroshko, S. Tarasov // Materials. – 2022. – Vol. 15. – P. 3209. – DOI: 10.3390/ ma15093209. 12. Huang K., Logé R.E. A review of dynamic recrystallization phenomena in metallic materials // Materials & Design. – 2016. – Vol. 111. – P. 548–574. – DOI: 10.1016/j.matdes.2016.09.012. 13. Phase formation and morphological characteristics of aluminum bronze and nickel alloy composites produced by the additive manufacturing process / A. Vorontsov, D. Gurianov, A. Zykova, S. Nikonov, A. Chumaevskii, E. Kolubaev // Scripta Materialia. – 2024. – Vol. 239. – P. 115811. – DOI: 10.1016/j.scriptamat.2023.115811. 14 Hansen N. Hall–Petch relation and boundary strengthening // Scripta Materialia. – 2004. – Vol. 51. – P. 801–806. – DOI: 10.1016/j.scriptamat.2004.06.002. 15. Yang B., Vehoff H. Dependence of nanohardness upon indentation size and grain size – A local examination of the interaction between dislocations and grain boundaries // Acta Materialia. – 2007. – Vol. 55. – P. 849–856. – DOI: 10.1016/j.actamat.2006.09.004. 16. Liu G., Ni S., Song M. Eff ect of indentation size and grain/sub-grain size on microhardness of high purity tungsten // Transactions of Nonferrous Metals Society of China. – 2015. – Vol. 25. – P. 3240–3246. – DOI: 10.1016/S1003-6326(15)63958-9. 17. Popov V.L., Heß M., Willert E. Handbook of plane contact mechanics. – Berlin; Heidelberg: Springer, 2025. – 260 p. – DOI: 10.1007/978-3-662-70173-7. 18. Filippov A.V., Rubtsov V.E., Tarasov S.Yu. Acoustic emission study of surface deterioration in tribocontacting //AppliedAcoustics. – 2017. –Vol. 117. – P. 106–112. – DOI: 10.1016/j.apacoust.2016.11.007. 19. Identifi cation of the wear process of a silverplating layer by dual acoustic emission sensing /A. Hase,

RkJQdWJsaXNoZXIy MTk0ODM1