Obrabotka Metallov 2025 Vol. 27 No. 4

OBRABOTKAMETALLOV Vol. 27 No. 4 2025 270 MATERIAL SCIENCE 3. Ryhänen J., Kallioinen M., Tuukkanen J., Junila J., Niemelä E., Sandvik P., Serlo W. In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness. Journal of Biomedical Materials Research, 1998, vol. 41 (3), pp. 481–488. DOI: 10.1002/ (sici)1097-4636(19980905)41:3<481::aid-jbm19>3.0.co;2-l. 4. Liu K., Yao X., Jiang L. Recent developments in bio-inspired special wettability. Chemical Society Reviews, 2010, vol. 39 (8), pp. 3240–3255. DOI: 10.1039/b917112f. 5. Poon R.W.Y., Ho J.P.Y., Liu X., Chung C.Y., Chu P.K., Yeung K.W.K., LuW.W., Cheung K.M.C. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2005, vol. 237 (1–2), pp. 411–416. DOI: 10.1016/j.nimb.2005.05.030. 6. Slobodyan M.S., Markov A.B. Laser and electron-beam surface processing on TiNi shape memory alloys: a review. Russian Physics Journal, 2024, vol. 67 (5), pp. 565–615. DOI: 10.1007/s11182-024-03158-5. 7. Meisner L.L., Markov A.B., Rotshtein V.P., Ozur G.E., Meisner S.N., Yakovlev E.V., Semin V.O., Mironov Yu.P., Poletika T.M., Girsova S.L., Shepel D.A. Microstructural characterization of Ti-Ta-based surface alloy fabricated on TiNi SMA by additive pulsed electron-beam melting of fi lm/substrate system. Journal of Alloys and Compounds, 2018, vol. 730, pp. 376–385. DOI: 10.1016/j.jallcom.2017.09.238. 8. Firstov G.S., Vitchev R.G., Kumar H., Blanpain B., Van Humbeeck J. Surface oxidation of NiTi shape memory alloy. Biomaterials, 2002, vol. 23 (24), pp. 4863–4871. DOI: 10.1016/S0142-9612(02)00244-2. 9. Marchenko E., Yasenchuk Yu., Baigonakova G., Gunther S., Yuzhakov M., Zenkin S., Potekaev A., Dubovikov K. Phase formation during air annealing of Ti-Ni-Ti laminate. Surface and Coatings Technology, 2020, vol. 388, p. 125543. DOI: 10.1016/j.surfcoat.2020.125543. 10. Khan M.A., Halil A.M., Abidin M.S.Z., Hassan M.H., Rahman A.A.A. Infl uence of laser surface texturing on the surface morphology and wettability of metals and non-metals: A review. Materials Today Chemistry, 2024, vol. 41, p. 102316. DOI: 10.1016/j.mtchem.2024.102316. 11. Pequegnat A., Michael A., Wang J., Lian K., Zhou Y., Khan M.I. Surface characterizations of laser modifi ed biomedical grade NiTi shape memory alloys. Materials Science and Engineering: C, 2015, vol. 50, pp. 367–378. DOI: 10.1016/j.msec.2015.01.085. 12. Zhang Q., Dong J., Peng M., Yang Z., Wan Y., Yao F., Zhou J., Ouyang C., Deng X., Luo H. Laser-induced wettability gradient surface on NiTi alloy for improved hemocompatibility and fl ow resistance. Materials Science and Engineering: C, 2020, vol. 111, p. 110847. DOI: 10.1016/j.msec.2020.110847. 13. Biffi C.A., Fiocchi J., Rancan M., Gambaro S., Cirisano F., Armelao L., Tuissi A. Ultrashort laser texturing of superelastic NiTi: Eff ect of laser power and scanning speed on surface morphology, composition and wettability. Metals, 2023, vol. 13 (2), p. 381. DOI: 10.3390/met13020381. 14. Chan C.-W., Carson L., Smith G.C. Fibre laser treatment of martensitic NiTi alloys for load-bearing implant applications: Eff ects of surface chemistry on inhibiting Staphylococcus aureus biofi lm formation. Surface and Coatings Technology, 2018, vol. 349, pp. 488–502. DOI: 10.1016/j.surfcoat.2018.06.015. 15. Chenrayan V., Vaishnav V., Shahapurkar K., Dhanabal P., Kalayarasan M., Raghunath S., Mano M. The eff ect of fs-laser micromachining parameters on surface roughness, bio-corrosion and biocompatibility of nitinol. Optics & Laser Technology, 2024, vol. 170, p. 110200. DOI: 10.1016/j.optlastec.2023.110200. 16. Milovanović D.S., Radak B.B., Gaković B.M., Batani D., Momčilović M.D., Trtica M.S. Surface morphology modifi cations of titanium based implant induced by 40 picosecond laser pulses at 266 nm. Journal of Alloys and Compounds, 2010, vol. 501 (1), pp. 89–92. DOI: 10.1016/j.jallcom.2010.04.047. 17. Sablina T.Y., Panchenko M.Yu., Zyatikov I.A., Puchikin A.V., Konovalov I.N., Panchenko Yu.N. Study of surface hydrophilicity of metallic materials modifi ed by ultraviolet laser radiation. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 4, pp. 218–233. DOI: 10.17212/1994-6309-2024-26.4-218-233. (In Russian). 18. Wang Y., Zhang M., Li K., Hu J. Study on the surface properties and biocompatibility of nanosecond laser patterned titaniumalloy. Optics&Laser Technology, 2021, vol. 139, p. 106987. DOI: 10.1016/j.optlastec.2021.106987. 19. Li S., Cui Z., Zhang W., Li Y., Li L., Gong D. Biocompatibility of micro/nanostructures nitinol surface via nanosecond laser circularly scanning. MaterialsLetters, 2019, vol. 255, p. 126591.DOI: 10.1016/j.matlet.2019.126591. 20. Hebbar R.S., Isloor A.M., Ismail A.F. Contact angle measurements. Membrane Characterization. Ed. by N. Hilal, A.F. Ismail, T. Matsuura, D. Oatley-Radcliff e. Elsevier, 2017, pp. 219–255. DOI: 10.1016/B978-0-44463776-5.00012-7. 21. Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 1969, vol. 13 (8), pp. 1741–1747. DOI: 10.1002/app.1969.070130815.

RkJQdWJsaXNoZXIy MTk0ODM1