Obrabotka Metallov 2025 Vol. 27 No. 4

OBRABOTKAMETALLOV Vol. 27 No. 4 2025 60 TECHNOLOGY References 1. Mohammed S.M.A.K., Nisar A., John D., SukumaranA.K., Fu Y., Paul T., Hernandez A.F., Seal S., Agarwal A. Boron nitride nanotubes induced strengthening in aluminium 7075 composite via cryomilling and spark plasma sintering. Advanced Composites and Hybrid Materials, 2025, vol. 8 (1), art. 155. DOI: 10.1007/s42114-024-01173-1. 2. Devitte C., Souza A.J., Amorim H.J. Impact of cooled compressed air and high-speed cutting on the drilling of hybrid composite-metal stacks. The International Journal of Advanced Manufacturing Technology, 2023, vol. 125 (11), pp. 5445–5461. DOI: 10.1007/s00170-023-11083-z. 3. Kulkarni P., Chinchanikar S. Machinability of Inconel 718 using unitary and hybrid nanofl uids under minimum quantity lubrication. Advances in Materials and Processing Technologies, 2025, vol. 11 (1), pp. 421–449. DOI: 10.1 080/2374068X.2024.2307103. 4. Bagheri A., Abedini V., Hajialimohamadi A. Impact of machining parameters on surface roughness and machining forces in Al7075 turning with minimum quantity lubrication and cold fl uid. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2025. DOI: 10.1177/09544089241 308052. 5. Kulkarni P., Chinchanikar S. Modelling turning performance of Inconel 718 with hybrid nanofl uid under MQL using ANN and ANFIS. Fracture and Structural Integrity, 2024, vol. 18 (70), pp. 71–90. DOI: 10.3221/ IGF-ESIS.70.04. 6. Prabhu S., Vinayagam B.K. Adaptive neuro fuzzy inference system modelling of multi-objective optimisation of electrical discharge machining process using single-wall carbon nanotubes. Australian Journal of Mechanical Engineering, 2015, vol. 13 (2), pp. 97–117. DOI: 10.7158/M13-074.2015.13.2. 7. Sharma D., Bhowmick A., Goyal A. Enhancing EDM performance characteristics of Inconel 625 superalloy using response surface methodology and ANFIS integrated approach. CIRP Journal of Manufacturing Science and Technology, 2022, vol. 37, pp. 155–173. DOI: 10.1016/j.cirpj.2022.01.005. 8. Hewidy M., Salem O. Integrating experimental modelling techniques with the Pareto search algorithm for multiobjective optimization in the WEDM of Inconel 718. The International Journal of Advanced Manufacturing Technology, 2023, vol. 129 (1–2), pp. 299–319. DOI: 10.1007/s00170-023-12200-8. 9. Sen B., Mia M., Mandal U.K., Mondal S.P. GEP-and ANN-based tool wear monitoring: a virtually sensing predictive platform for MQL-assisted milling of Inconel 690. The International Journal of Advanced Manufacturing Technology, 2019, vol. 105, pp. 395–410. DOI: 10.1007/s00170-019-04187-y. 10. Kumar A., Pradhan M.K. An ANFIS modelling and genetic algorithm-based optimization of through-hole electrical discharge drilling of Inconel-825 alloy. Journal of Materials Research, 2023, vol. 38 (2), pp. 312–327. DOI: 10.1557/s43578-022-00728-6. 11. Premnath A.A., Alwarsamy T., Sugapriya K. A comparative analysis of tool wear prediction using response surface methodology and artifi cial neural networks. Australian Journal of Mechanical Engineering, 2014, vol. 12 (1), pp. 38–48. DOI: 10.7158/M12-075.2014.12.1. 12. Babu K.N., Karthikeyan R., Punitha A. An integrated ANN–PSO approach to optimize the material removal rate and surface roughness of wire cut EDM on INCONEL 750. Materials Today: Proceedings, 2019, vol. 19, pp. 501–505. DOI: 10.1016/j.matpr.2019.07.643. 13. Imran M., Shuangfu S., Yuzhu B., Yuming W., Raheel N. Optimising subsurface integrity and surface quality in mild steel turning: A multi-objective approach to tool wear and machining parameters. Journal of Materials Research and Technology, 2025, vol. 35, pp. 3440–3462. DOI: 10.1016/j.jmrt.2025.01.246. 14. Subramanian M., Sakthivel M., Sooryaprakash K., Sudhakaran R. Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm. Procedia Engineering, 2013, vol. 64, pp. 690–700. DOI: 10.1016/j.proeng.2013.09.144. 15. Pramod R., Kumar G.V., Gouda P.S., Mathew A.T. A study on the Al2O3 reinforced Al7075 metal matrix composites wear behavior using artifi cial neural networks. Materials Today: Proceedings, 2018, vol. 5 (5), pp. 11376– 11385. DOI: 10.1016/j.matpr.2018.02.105. 16. Kulkarni P., Chinchanikar S. Cutting force modeling during turning Inconel 718 using unitary Al2O3 and hybrid MWCNT + Al2O3 nanofl uids under minimum quantity lubrication. International Journal on Interactive Design and Manufacturing (IJIDeM), 2025, vol. 19 (7), pp. 5185–5202. DOI: 10.1007/s12008-024-02120-6. 17. Chinchanikar S., Kulkarni P. Machining eff ects and multi-objective optimization in Inconel 718 turning with unitary and hybrid nanofl uids under MQL. Fracture and Structural Integrity, 2024, vol. 18 (68), pp. 222–241. DOI: 10.3221/IGF-ESIS.68.15.

RkJQdWJsaXNoZXIy MTk0ODM1