Obrabotka Metallov 2025 Vol. 27 No. 4

OBRABOTKAMETALLOV Vol. 27 No. 4 2025 91 TECHNOLOGY Alloys and Compounds. – 2019. – Vol. 802. – P. 573– 582. – DOI: 10.1016/j.jallcom.2019.06.156. 7. Электромеханическое упрочнение металлов и сплавов / В.П. Багмутов, С.Н. Паршев, Н.Г. Дудкина, И.Н. Захаров, А.Н. Савкин, Д.С. Денисевич. – Волгоград: ВолгГТУ, 2016. – 460 с. 8. Аскинази Б.М. Упрочнение и восстановление деталей машин электромеханической обработкой. – 3-е изд., перераб. и доп. – М.: Машиностроение, 1989. – 200 с. 9. Sensitivity of material failure to surface roughness: Astudy on titanium alloys Ti64 and Ti407 / S. Sneddon, Y. Xu, M. Dixon, D. Rugg, P. Li, D.M. Mulvihill // Materials & Design. – 2021. – Vol. 200. – P. 109438. – DOI: 10.1016/j.matdes.2020.109438. 10. Overview of surface modifi cation techniques for titanium alloys in modern material science: A comprehensive analysis / K. Gao, Y. Zhang, J. Yi, F. Dong, P. Chen // Coatings. – 2024. – Vol. 14 (1). – P. 148. – DOI: 10.3390/coatings14010148. 11. Enhancement of the microstructure and fatigue crack growth performance of additive manufactured titanium alloy parts by laser-assisted ultrasonic vibration processing / S.A. Ojo, K. Manigandan, G.N. Morscher, A.L. Gyekenyesi // Journal of Materials Engineering and Performance. – 2024. – Vol. 33. – P. 10345–10359. – DOI: 10.1007/s11665-024-09323-8. 12. Amanov A., Yeo I.K., Jeong S.H. Advanced postprocessing of Ti6Al4V alloy fabricated by selective laser melting: A study of laser shock peening and ultrasonic nanocrystal surface modifi cation // Journal of Materials Research and Technology. – 2025. – Vol. 35. – P. 4020– 4031. – DOI: 10.1016/j.jmrt.2025.02.038. 13. Application of ultrasonic nanocrystal surface modifi cation (UNSM) technique for surface strengthening of titaniumand titaniumalloys:Amini review / R. Liu, S. Yuan, N. Lin, Q. Zeng, Z. Wang, Y. Wu // Journal of Materials Research and Technology. – 2021. – Vol. 11. – P. 351–377. – DOI: 10.1016/j.jmrt.2021.01.013. 14. Eff ect of surface roughness on fatigue strength of Ti-6Al-4V alloy manufactured by additive manufacturing / M. Nakatani, H. Masuo, Y. Tanaka, Y. Murakami // Procedia Structural Integrity. – 2019. – Vol. 19. – P. 294– 301. – DOI: 10.1016/j.prostr.2019.12.032. 15. Civiero R., Perez-Rafols F., Nicola L. Modeling contact deformation of bare and coated rough metal bodies // Mechanics of Materials. – 2023. – Vol. 179. – P. 104583. – DOI: 10.1016/j.mechmat.2023.104583. 16. Han T., Fan J. Ultrasonic measurement of contact stress at metal-to-metal interface based on a real rough profi le through modeling and experiment // Measurement. – 2023. – Vol. 217. – P. 113046. – DOI: 10.1016/j. measurement.2023.113046. 17. A novel comprehensive framework for surface roughness prediction of integrated robotic belt grinding and burnishing of Inconel 718 / B. Qi, X. Huang, W. Guo, X. Ren, H. Chen, X. Chen // Tribology International. – 2024. – Vol. 195. – P. 109574. – DOI: 10.1016/j. triboint.2024.109574. 18. Infl uence factors and prediction model of surface roughness in single-point diamond turning of polycrystalline soft metal / Z. Xue, M. Lai, F. Xu, F. Fang // Journal of Materials Processing Technology. – 2024. – Vol. 324. – P. 118256. – DOI: 10.1016/j.jmatprotec.2023.118256. 19. Modeling of surface hardening and roughness induced by turning AISI 4140 QT under diff erent machining conditions / B. Stampfer, J. Bachmann, D. Gauder, D. Böttger, M. Gerstenmeyer, G. Lanza, B. Wolter, V. Schulze // Procedia CIRP. – 2022. – Vol. 108. – P. 293–298. – DOI: 10.1016/j.procir.2022.03.050. 20. Roughness prediction model of milling noise-vibration-surface texture multi-dimensional feature fusion for N6 nickel metal / S. Li, S. Li, Z. Liu, A.V. Petrov // Journal of Manufacturing Processes. – 2022. – Vol. 79. – P. 166–176. – DOI: 10.1016/j.jmapro.2022.04.055. 21. An acoustic dataset for surface roughness estimation in milling process / N.R. Sakthivel, J. Cherian, B.B. Nair, A. Sahasransu, L.N.V.P. Aratipamula, S.A. Gupta // Data in Brief. – 2024. – Vol. 57. – P. 111108. – DOI: 10.1016/j.dib.2024.111108. 22. Surface roughness prediction based on fusion of dynamic-static data / J. Wang, X. Wu, Q. Huang, Q. Mu, W. Yang, H. Yang, Z. Li // Measurement. – 2025. – Vol. 243. – P. 116351. – DOI: 10.1016/j.measurement.2024.116351. 23. Features of changes in the surface structure and phase composition of the of α + β titanium alloy after electromechanical and thermal treatment / V.P. Bagmutov, V.I. Vodopyanov, I.N. Zakharov, A.Y. Ivannikov, A.I. Bogdanov, M.D. Romanenko, V.V. Barinov // Metals. – 2022. – Vol. 12 (9). – P. 1535. – DOI: 10.3390/ met12091535. 24. The improved fault location method based on natural frequency in MMC-HVDC grid by combining FFT and MUSIC algorithms / J. He, B. Li, Q. Sun, Y. Li, H. Lyu, W. Wang, Z. Xie // International Journal of Electrical Power & Energy Systems. – 2022. – Vol. 137. – P. 107816. – DOI: 10.1016/j.ijepes.2021.107816. 25. Федоров В.Л. Критерий определения числа гармоник рядов Фурье, аппроксимирующих напряжения и токи трансформатора // Омский научный вестник. – 2018. – № 5 (161). – С. 82–89. – DOI: 10.25206/1813-8225-2018-161-82-89. 26. Конспект лекций по дисциплине «Основы восстановления деталей и ремонт автомобилей» / сост. Г.В. Мураткин. – Тольятти: ТГУ, 2008. – 120 с.

RkJQdWJsaXNoZXIy MTk0ODM1