OBRABOTKAMETALLOV Vol. 27 No. 4 2025 94 TECHNOLOGY 2. Averchenkov V.I., Vasiliev A.S., Heifetz M.L. Technological heredity in the formation of the quality of manufactured parts. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2018, no. 10 (88), pp. 27–32. (In Russian). 3. Grzesik W., Żak K., Chudy R., Prażmowski M., Małecka J. Optimization of subtractive-transformative hybrid processes supported by the technological heredity concept. CIRP Annals, 2019, vol. 68 (1), pp. 101–104. DOI: 10.1016/j.cirp.2019.03.005. 4. Fedorov A.A., Zhdanova Yu.E., Linovskii A.V., Bobkov N.V., Bredgauer Yu.O. Vliyanie fazovogo sostava titanovykh splavov na parametry sherokhovatosti, poluchaemye v protsesse provolochnoi elektroerozionnoi obrabotki [Infl uence of the phase composition of titanium alloys on the roughness parameters obtained during wire electrical discharge machining]. Omskii nauchnyi vestnik = Omsk Scientifi c Bulletin, 2021, no. 4 (178), pp. 18–24. DOI: 10.25206/1813-8225-2021-178-18-24. (In Russian). 5. Muratkin G.V., Sarafanova V.A. Vliyanie tekhnologicheskoi nasledstvennosti napryazhenno-deformirovannogo sostoyaniya na tochnost’ nezhestkikh detalei [Infl uence of technological heredity of the stress-strain state on the accuracy of non-rigid parts]. Problemy mashinostroeniya i nadezhnosti mashin = Problems of Mechanical Engineering and Machine Reliability, 2020, no. 1, pp. 56–64. DOI: 10.31857/S0235711920010095. 6. Zhang H., Ren Z., Liu J., Zhao J., Liu Z., Lin D., Zhang R., Graber M.J., Thomas N.K., Kerek Z. D., Wang G.- X., Dong Y., Ye C. Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening. Journal of Alloys and Compounds, 2019, vol. 802, pp. 573–582. DOI: 10.1016/j.jallcom.2019.06.156. 7. Bagmutov V.P., Parshev S.N., Dudkina N.G., Zakharov I.N., Savkin A.N., Denisevich D.S. Elektromekhanicheskoe uprochnenie metallov i splavov [Electromechanical hardening of metals and alloys]. Volgograd, VolgSTU Publ., 2016. 460 p. 8. Askinazi B.M. Uprochnenie i vosstanovlenie detalei mashin elektromekhanicheskoi obrabotkoi [Strengthening and restoration of machine parts by electromechanical treatment]. 3rd ed., rev. Moscow, Mashinostroenie Publ., 1989. 200 p. 9. Sneddon S., Xu Y., Dixon M., Rugg D., Li P., Mulvihill D.M. Sensitivity of material failure to surface roughness: A study on titanium alloys Ti64 and Ti407. Materials & Design, 2021, vol. 200, p. 109438. DOI: 10.1016/j. matdes.2020.109438. 10. Gao K., Zhang Y., Yi J., Dong F., Chen P. Overview of surface modifi cation techniques for titanium alloys in modern material science: A comprehensive analysis. Coatings, 2024, vol. 14 (1), p. 148. DOI: 10.3390/coatings14010148. 11. Ojo S.A., Manigandan K., Morscher G.N., Gyekenyesi A.L. Enhancement of the microstructure and fatigue crack growth performance of additive manufactured titanium alloy parts by laser-assisted ultrasonic vibration processing. Journal of Materials Engineering and Performance, 2024, vol. 33, pp. 10345–10359. DOI: 10.1007/s11665024-09323-8. 12. Amanov A., Yeo I.K., Jeong S.H. Advanced post-processing of Ti6Al4V alloy fabricated by selective laser melting: A study of laser shock peening and ultrasonic nanocrystal surface modifi cation. Journal of Materials Research and Technology, 2025, vol. 35, pp. 4020–4031. DOI: 10.1016/j.jmrt.2025.02.038. 13. Liu R., Yuan S., Lin N., Zeng Q., Wang Z., Wu Y. Application of ultrasonic nanocrystal surface modifi cation (UNSM) technique for surface strengthening of titanium and titanium alloys: A mini review. Journal of Materials Research and Technology, 2021, vol. 11, pp. 351–377. DOI: 10.1016/j.jmrt.2021.01.013. 14. Nakatani M., Masuo H., Tanaka Y., Murakami Y. Eff ect of surface roughness on fatigue strength of Ti6Al-4V alloy manufactured by additive manufacturing. Procedia Structural Integrity, 2019, vol. 19, pp. 294–301. DOI: 10.1016/j.prostr.2019.12.032. 15. Civiero R., Perez-Rafols F., Nicola L. Modeling contact deformation of bare and coated rough metal bodies. Mechanics of Materials, 2023, vol. 179, p. 104583. DOI: 10.1016/j.mechmat.2023.104583. 16. Han T., Fan J. Ultrasonic measurement of contact stress at metal-to-metal interface based on a real rough profi le through modeling and experiment. Measurement, 2023, vol. 217, p. 113046. DOI: 10.1016/j.measurement.2023.113046. 17. Qi B., Huang X., Guo W., Ren X., Chen H., Chen X. A novel comprehensive framework for surface roughness prediction of integrated robotic belt grinding and burnishing of Inconel 718. Tribology International, 2024, vol. 195, p. 109574. DOI: 10.1016/j.triboint.2024.109574. 18. Xue Z., Lai M., Xu F., Fang F. Infl uence factors and prediction model of surface roughness in single-point diamond turning of polycrystalline soft metal. Journal of Materials Processing Technology, 2024, vol. 324, p. 118256. DOI: 10.1016/j.jmatprotec.2023.118256.
RkJQdWJsaXNoZXIy MTk0ODM1