Obrabotka Metallov 2014 No. 2

ОБРАБОТКА МЕТАЛЛОВ № 2 (63) 2014 105 МАТЕРИАЛОВЕДЕНИЕ OBRABOTKAMETALLOV (METALWORKING AND MATERIAL SCIENCE) N 2(63), April–June 2014, Pages 100–106 Experimental studies of strain resistance of aluminum alloy АД0 in the undersolidus temperature range Konovalov A.V. 1 , D.Sc. (Engineering), Professor, e-mail: avk@imach.uran.ru Smirnov A.S. 1 , Ph.D. (Engineering) Chernomas V.V. 2 , D.Sc. (Engineering), Professor, e-mail: mail@imim.ru Subachev Y.V. 1 , Ph.D. (Engineering) Sevastyanov G.M. 2 , Ph.D. (Physics and Mathematics) 1 Institute of Engineering ScienceUral Branch of RussianAcademy of Sciences, 34Komsomolskaya str.,Yekaterinburg, 630049, Russian Federation 2 Institute of Machinery and Metallurgy, Russian Academy of Sciences (Far Eastern Branch), 1 Metallurgov st., Komsomolsk-on-Amur, 681005, Russian Federation Abstract The strain resistance of the aluminum alloy АД0 during deformation in near solidus temperatures ranging between 540 and 640  С and strain rates ranging between 0.06 and 1.2 s –1 are studied in the article. It is found that the strain resistance increases with the growth of strain. It can be due to the passing dynamic recovery that inhibits the start of the dynamic recrystallization. At the temperature ranging from 560 to 640  С, the АД0 alloy has an abnormal behavior of the strain resistance curve. It is expressed in an inverse strain-rate dependence of strain resistance. This behavior may result in the barrier effect of blocking free dislocations by dopant atoms in the strain-rate range from 0.06 to 0.1 s –1 . Keywords: aluminium, strain resistance, viscoplastic properties, solidus temperature References 1. Spencer D.B., Mehrabian R., Flemings M.C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metallurgical Transactions, 1972, Vol. 3, no.7, pp. 1925–1932. 2. Fan Z. Semisolid metal processing. International Materials Reviews, 2002, Vol. 47, no.2, pp. 49–85. 3. Atkinson H. Modelling the semisolid processing of metallic alloys. Progress in Materials Science, 2005, Vol. 50, no. 3, pp. 341–412. 4. Jiang J.-f., Luo S.-j. Preparation of semi-solid billet of magnesium alloy and its thixoforming. Transactions of Nonferrous Metals Society of China, 2007, Vol. 17, no. 1, pp. 46–50. 5. Kirdeev Yu.P., Belousov I.Ya., Rakogon A.I. Izgotovlenie detalei s vysokimi tonkimi stenkami shtampov- koi kristallizuiushchegosia aliuminiia [Manufacture of parts with high thin-walled extruded aluminum crystalliz- ing]. Kuznechno-Shtampovochnoe Proizvodstvo ( Obrabotka Metallov Davleniem ) – Press-forging production. Metal Forming , 2002, no. 3, pp. 9–11. 6. Semenov B.I., Bocharov Yu.A., Kushtarov K.M., Gladkov Yu.A. Sovremennye tekhnologii formoobrazova- niia v tverdozhidkom sostoianii [Modern technology in shaping solid-liquid state]. Kuznechno-Shtampovochnoe Proizvodstvo ( Obrabotka Metallov Davleniem ) – Press-forging production. Metal Forming , 2006, no. 10, pp. 33–43. 7. Chiarmetta G., Giordano P. STAMPAL: A family of cutting-edge technologies. Comparison of applications in automotive engineering. STAMPAL: Une famille de technologies a l’avantgarde. Comparison des applications dans la domaine de l’automobile. 2002, no. 217, 21 p. 8. Chernomas V.V., Lovizin N.S., Sosnin A.A. Kriterii ustoichivosti tekhnologicheskogo protsessa polucheniia metalloizdelii na ustanovke gorizontal’nogo lit’ia i deformatsii metalla [Stability criteria for manufacturing metal products on a horizontal metal casting and deformation plant]. Problemy Mashinostroeniya i Nadezhnosti Mashin – Journal of Machinery Manufacture and Reliability , 2012, Vol. 2, pp. 71–77.

RkJQdWJsaXNoZXIy MTk0ODM1