Obrabotka Metallov 2014 No. 2

ОБРАБОТКА МЕТАЛЛОВ № 2 (63) 2014 37 ТЕХНОЛОГИЯ OBRABOTKAMETALLOV (METAL WORKING AND MATERIAL SCIENCE) N 2(63), April – June 2014, Pages 31–38 The influence of the geometrical factor on the force parameters of deformation and evolutions of the compression front of porous materials Chernomas V.V. , D.Sc. (Engineering), Professor, e-mail: mail@imim.ru Bogdanova N.A. , Post-graduate Student, Sevastyanov G.M. , Ph.D. (Physics and Mathematics) Sosnin A.A. , Ph.D. (Engineering) Institute of Machinery and Metallurgy, Russian Academy of Sciences (Far Eastern Branch), 1 Metallurgov st., Komsomolsk-on-Amur, 681005, Russian Federation Abstract The influence of geometric size of the holes of the perforated plate on the parameters of the process of its compression in an enclosed stamp is researched. The curves, characterizing the deforming force and the evolution of the compression front at different degrees of deformation are shown. Force increases as the compaction of material and essentially depends on the speed of the tool motion speed and parameters of contact between workpiece and instrument. The relative thickness of fully densified layer material increases with increasing of the strain rate. It was revealed that the geometric size of the pores with the same degree of porosity has no significant effect on the characteristics of the compression front propagation and force parameters of the deformation process. Keywords: compression, deformation, compression front, perforated plate. References 1. Shiomi M., Imagama S., Osakada K., Matsumoto R. Fabrication of aluminium foams from powder by hot extrusion and foaming. Journal of Materials Processing Technology, 2010, Vol. 210, Issue 9, pp. 1203-1208. 2. Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 2001, Vol. 46, Issue 6, pp. 559–632. 3. Neugebauer R., Hipke T. Machine tools with metal foams. Advanced Engineering Materials, 2006, Vol. 8, Issue 9, pp. 858–863, doi: 10.1002/adem.200600095. 4. Stoebener, K., Rausch, G. Aluminium foam-polymer composites: processing and characteristics. Journal of Material Science, 2009, Vol. 44, Issue 6 pp. 1506–1511. doi: 10.1007/s10853-008-2786-8. 5. Miyoshi T., Itoh M., Akiyama S., Kitahara A. ALPORAS Aluminium Foam: Production Process, Properties and Application. Advanced Engineering Materials, 2000, Vol. 2, Issue 4, pp. 179–183, doi: 10.1002/(SICI)1527- 2648(200004)2:4<179::AID-ADEM179 >3.0.CO ;2-G. 6. Starovoitenko E.I. Penoaliuminievye granuly – perspektivy proizvodstva i promyshlennogo primeneniia novogo poristogo materiala [Aluminum foam pellets – prospects of production and industrial application of new porous material.]. Tekhnologiia legkikh splavov – Technology of light alloys , 2006, no. 1–2, pp. 218–221. 7. Arbuzova L.A., Bondarev B.I., RozhkovA.A., ShmakovYu.V., Lashkov N.I., Talalaev V.D. Sposob polucheniia poristykh polufabrikatov iz poroshkov aliuminievykh splavov [Amethod of producing porous semi-finished aluminum alloy powder]. Patent RF, no. 2138367, 1998. 8. Arbuzova L.A., Starovoitenko E.I., Pol'kin I.S., Andreev D.A., Talalaev V.D., Ginzhul A.V. Sposob polucheniia poristykh izdelii iz poroshkov aliuminievykh splavov [A method for producing porous articles from powders of aluminum alloys]. Patent RF, no. 2139774, 1998. 9. Christensen R.M. Mechanics of Composite Materials. Wiley-Interscience, New York, 1979, 348 p. (Russ. ed.: Trans. eng. Beil A.I., Zhmud' N.P. Edited by Tarnopol'skii Yu.M. Vvedenie v mekhaniku kompozitov . Moscow, Mir Publ, 1982. 336 p.). 10. Pobedria B.E. Mekhanika kompozitsionnykh materialov [Mechanics of Composite Materials]. Moscow, MSU, 1984. 336 p.

RkJQdWJsaXNoZXIy MTk0ODM1