Obrabotka Metallov 2014 No. 3

ОБРАБОТКА МЕТАЛЛОВ № 3 (64) 2014 100 ТЕХНОЛОГИЯ this paper is to numerically model the stress-strain state of the material under high energy heating by high-frequency currents (HEH HFC). Methods: The finite element model was created in the ANSYS and SYSWELD software complexes that use numerical methods to solve differential equations of transient heat conduction (Fourier equation), carbon diffusion (Fick’s second law) and elastoplastic material behavior. The modeling results were verified by means of natural experiments using optical and scanning microscopy, mechanical and X-ray methods to detect residual stresses. Results and Discussion: It was established that in the observed change range of the HEH HFC modes, the level of residual compression stresses on surfaces of parts may achieve the values of -500 to -1000 MPa. It was theoretically proven and experimentally confirmed that the size of the transition layer should constitute 25 to 33 % of the hardened layer depth, which shifts the peak of the tension stresses to the deeper layers of the material while decreasing the compression stresses on the surface by 6 to 10 % and excluding the possibility of heat treatment crack formation. Keywords: high-energy heating, high-frequency hardening, FEM, stress-strain state, residual stresses, surface layer. References 1. Jianbin Luo, Yonggang Meng, Tianmin Shao, Qian Zhao. Advanced Tribology: Proceedings of CIST2008 & ITS-IFToMM2008. Beijing, Tsinghua University Press, Berlin, Heidelberg, Springer-Verlag, 2009. 1056 p. 2. Davis J.R. Surface Hardening of Steels: Understanding the Basics. Ohio, Materials Park, ASM International, 2002. 364 p. 3. Ion J.C. Laser processing of engineering materials: Principles, procedure and industrial application. Burlington, Elsevier Butterworth-Heinemann, 2005. 576 p. 4. Béjar M.A., Henríquez R. Surface hardening of steel by plasma-electrolysis boronizing. Materials and Design, 2009, vol. 30, iss. 5, pp. 1726-1728. doi: 10.1016/j.matdes.2008.07.006 5. Abashkin V.V., Gorshkov O.A., IlyinA.A., LovtsovA.S., Rizakhanov R.N. Multipass surface hardening of steel samples with inclined surfaces by concentrated electron beam in the air of atmosphere pressure. High Temperature Material Processes: an International Quarterly of High-Technology Plasma Processes, 2004, vol. 8, iss. 3, pp. 427- 432. doi: 10.1615/HighTempMatProc.v8.i3.80 6. Songa R.G., Zhanga K., Chena G.N. Electron beam surface treatment. Pt. 1: Surface hardening of AISI D3 tool steel. Vacuum, 2003, vol. 69, iss. 4, pp. 513-516. doi: 10.1016/S0042-207X(02)00583-3 7. Engelko V., Yatsenko B., Mueller G., Bluhm H. Pulsed electron beam facility (GESA) for surface treatment of materials. Vacuum, 2001, vol. 62, iss. 2-3, pp. 211-216. doi: 10.1016/S0042-207X(00)00446-2 8. Golkovskii M.G. Hardening and cladding of a relativistic electron beam outside the vacuum. Technological capabilities of the method. Saarbrucken, LAPLAMBERT Academic Publ., 2013. 317 p. 9. Bataev I.A., Golkovskii M.G., BataevA.A., LosinskayaA.A., PopelyukhA.I., Drobyaz E.A. Surface hardening of steels with carbon by non-vacuum electron-beam processing. Surface and Coatings Technology, 2014, vol. 242, pp. 164-169. doi: 10.1016/j.surfcoat.2014.01.038 10. Rudnev V.I., Loveless D. 12.15 – Induction Hardening: Technology, Process Design, and Computer Modeling. Comprehensive Materials Processing, 2014, vol. 12: Thermal Engineering of Steel Alloy Systems, pp. 489-580. doi: 10.1016/B978-0-08-096532-1.01217-6. 11. Ivantsivskii V.V., Bataev V.A. Uprochnenie poverkhnostnykh sloev detalei mashin s ispol’zovaniem vysokoenergeticheskogo nagreva tokami vysokoi chastoty [Surface hardening of machine parts by using high-energy heating by high frequency currents]. Polzunovskii vestnik – Polzunov Bulletin , 2005, no. 2-2, pp. 104-112. 12. Kidin I.N. Fizicheskie osnovy elektrotermicheskoi obrabotki materialov i splavov [Physical basis of electrothermal treatment of materials and alloys]. Moscow, Metallurgiya Publ., 1969. 376 p. 13. Golovin G.F., Zamyatnin M.M. Vysokochastotnaya termicheskaya obrabotka. Voprosy metallovedeniya i tekhnologii [High-frequency heat treatment. Problems of Metallurgy and Technology]. Leningrad, Mashinostroenie Publ., 1990. 239 p. 14. Ivantsivskii V.V., Bataev V.A. Svyaz’ parametrov termicheskikh tsiklov, realizuemykh v poverkhnostnykh sloyakh detalei mashin, s glubinoi uprochneniya pri vozdeistvii ob”emnykh kontsentrirovannykh istochnikov nagreva [Communication parameters of thermal cycles, implemented in the surface layers of machine parts, with the depth

RkJQdWJsaXNoZXIy MTk0ODM1