Obrabotka Metallov 2014 No. 4

ОБРАБОТКА МЕТАЛЛОВ № 4 (65) 2014 27 ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ В.Ф. Горбунов, А.А. Филатов // Уголь. – 1992. – № 9. – С. 10–12. 6. Коган Б.И. Технологическое обеспечение ка- чества горных машин и инструментов. – Кемерово: Кузбассвузиздат, 1996. – 259 с. 7. Коган Б.И., Дрыгин М.Ю. Ремонтно-техноло- гический блок для обеспечения качества монтажа крупнотоннажных узлов горных машин // Обработка металлов (технология, оборудование, инструменты). – 2012. – № 4 (57). – С. 15–18. 8. Camelio J.A., Hu S.J., Ceglarek D. Impact of Fix- ture Design on Sheet Metal Assembly Variation // Journal of Manufacturing Systems. – 2004. – Vol. 23, iss. 3. – P. 182–193. 9. Разработка требований к основным системам геохода / В.В. Аксенов, А.Б. Ефременков, В.Ю. Бе- гляков, М.Ю. Блащук, В.Ю. Тимофеев, А.В. Сапож- кова // Горное оборудование и электромеханика. – 2009. – № 5. – С. 3–7. 10. Компоновочные решения машин для прове- дения горных выработок на основе геовинчестер- ной технологии / В.В. Аксенов, А.Б. Ефременков, В.Ю. Бегляков, П.В. Бурков, М.Ю. Блащук, А.В. Са- пожкова // Горный информационно-аналитический бюллетень. – 2009. – № 1. – С. 251–259. 11. ФЮРА. 612322.401.0.00.00.000ПЗ. Геоход. Технический проект. Пояснительная записка. – Юрга: ЮТИ ТПУ, 2014. – 238 с. 12. Lowth S., Axinte D.A. An assessment of “variation conscious” precision fixturing methodologies for the control of circularity within large multi-segment annular assemblies // Precision Engineering. – 2014. – Vol. 38, iss. 2. – P. 379–390. 13. Straight-build assembly optimization: A method to minimize stage-by-stage eccentricity error in the assembly of axisymmetric rigid components (two- dimensional case study) / T. Hussain, Z. Yang, A.A. Po- pov, S. McWilliam // ASME Journal of Manufacturing Science and Engineering. – 2011. – Vol. 133, iss. 3. – P. 031014/1-031014/9. 14. Liu T., Wang M.Y. An Approximate Quadratic Analysis of Fixture Locating Schemes // Proceedings of 7th International Conference on Automation Tech- nology “Automation 2003”, Chia-Yi, Taiwan, September 2003. – P. 527–532. 15. Memon M., Hussain T., Ali Z. Minimizing Assembly Errors by Selecting Optimum Assembly Sequence in theAssembly of a Rigid Circular Structure // Mehran University Research Journal of Engineering & Technology. – 2012. – Vol. 31, iss. 4. – P. 743–754. OBRABOTKAMETALLOV (METAL WORKING AND MATERIAL SCIENCE) N 4(65), October – December 2014, Pages 19–28 Ensuring the geometric accuracy of shell during assembly of Geohod sections Aksenov V.V. , D.Sc. (Engineering), Professor, e-mail: v.aksenov@icc.kemsc.ru Walter A.V. , Ph.D. (Engineering), Associate Professor, e-mail: avwalter@tpu.ru Beglyakov V.Yu. , Ph.D. (Engineering), Associate Professor, e-mail: begljakov@gmail.com Yurga Institute of Technology, TPU Affiliate, 26 Leningradskaya st., Yurga, 652055, Russian Federation Abstract The article shows the way to ensure the geometric accuracy of large segmented-ring structures, for example sections of Geohod. The method of installation, consisting in location of the sector by the shell surface on a fixed support therewith the shells of individual sectors approximate shell section as a whole, is offered. Mathematical expressions of deviation profile of the sector with the real sector size and distances, which define a position of the supports, are received. The factors affecting geometric accuracy of the shell section and the impact of these factors on the accuracy are examined. Problem of determination of the maximum deviation of the profile of the sector, depending on the tolerance of the sector size and distance, establishing the position of the supports, is set. The dependences of the maximum values of the deviation of the sector profile on the of the tolerance levels are gotten. It is shown that the proposed scheme can be installed to provide higher accuracy of the shell section, than that which has a separate sector. Keywords: large segmented-ring assemblies, fixturing, assembly, circularity, variation conscious, geokhod, shell

RkJQdWJsaXNoZXIy MTk0ODM1