Obrabotka Metallov 2014 No. 4

ОБРАБОТКА МЕТАЛЛОВ № 4 (65) 2014 50 МАТЕРИАЛОВЕДЕНИЕ 2. Navas С., Colaco R., de Damborenea J., Vilar R. Abrasive wear behavior of laser clad and flame sprayed- melted NiCrBSi coatings. Surface and Coatings Technology , 2006, vol. 200, iss. 24, pp. 6854–6862. doi: 10.1016/j. surfcoat.2005.10.032 3. Fernández E., Cadenas M., Gonsález R., Navas C., Fernández R., de Damborenea J. Wear behaviour of laser clad NiCrBSi coating. Wear , 2005, vol. 259, iss. 7-12, pp. 870–875. doi: 10.1016/j.wear.2005.02.063 4. Katsich C., Badisch E. Effect of carbide degradation in a Ni-based hardfacing under abrasive and combined impact/abrasive conditions. Surface and Coatings Technology , 2011, vol. 206, iss. 6, pp. 1062–1068. doi: 10.1016/j. surfcoat.2011.07.064 5. Gurumoorthy K., Kamaraj M., Prasad Rao K., Sambasiva Rao A., Venugopal S. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy. Material Science and Engineering: A , 2007, vol. 456, iss. 1-2, pp. 11–19. doi: 10.1016/j.msea.2006.12.121 6. Cai B., Tan Y.-f., He L., Tan H., Gao L. Tribological properties of TiC particles reinforced Ni-based alloy composite coatings. Transactions of Nonferrous Metals Society of China , 2013, vol. 23, iss. 6, pp. 1681–1688. doi: 10.1016/S1003-6326(13)62648-5 7. Liyanage T., Fisher G., Gerlich A.P. Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW). Surface and Coatings Technology , 2010, vol. 205, iss. 3, pp. 759–765. doi: 10.1016/j.surfcoat.2010.07.095 8. MakarovA.V, Savrai R.A., OsintsevaA.L., Malygina I.Yu. Vliyanie khimicheskogo sostava na tribologicheskie svoistva khromonikelevykh pokrytii, poluchennykh metodom gazoporoshkovoi lazernoi naplavki [Effect of chemical composition on the tribological properties of nickel-chromium coatings produced by gas-powder laser cladding]. Izvestiya Chelyabinskogo nauchnogo tsentra – Proceedings of the Chelyabinsk Scientific Center , 2009, no. 2 (44), pp. 28–33. 9. Makarov A.V., Gorkunov E.S., Malygina I.Yu., Kogan L.Kh., Savrai R.A., Osintseva A.L. Vikhretokovyi kontrol’ tverdosti, iznosostoikosti i tolshchiny pokrytii, poluchennykh metodom gazoporoshkovoi lazernoi naplavki [Eddy-current testing of the hardness, wear resistance, and thickness of coatings prepared by gas-powder laser cladding]. Defektoskopiya – Russian Journal of Nondestructive Testing , 2009, no. 11, pp. 68–78. (In Russian) 10. Soboleva N.N., Malygina I.Yu., OsintsevaA.L., Pozdeeva N.A. Vliyanie mikrostruktury i fazovogo sostava na tribologicheskie svoistva NiCrBSi lazernykh pokrytii [The influence of the microstructure and phase composition on tribological performances of NiCrBSi laser coatings]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi Akademii Nauk – Proceedings of the Samara Scientific Center of the RAS , 2011, vol. 13, no. 4 (3), pp. 869–873. 11. Zikin A., Badisch E., Hussainova I., Tomastik C., Danninger H. Characterisation of TiC–NiMo reinforced Ni- based hardfacing. Surface and Coatings Technology , 2013, vol. 236, pp. 36–44. doi: 10.1016/j.surfcoat.2013.02.027 12. Wang X.H., Zhang M., Liu X.M., Qu S.Y., Zou Z.D. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding. Surface and Coatings Technology , 2008, vol. 202, iss. 15, pp. 3600–3606. doi: 10.1016/j.surfcoat.2007.12.039 13. Yang S., Liu W.-j., Zhong M.-l., Wang Z.-j. TiC reinforced composite coating produced by powder feeding laser cladding. Materials Letters , 2004, vol. 58, iss. 24, pp. 2958–2962. doi: 10.1016/j.matlet.2004.03.051 14. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. Formirovanie kompozitsionnogo pokrytiya NiCrBSi – TiC s povyshennoi abrazivnoi iznosostoikost’yu metodom gazoporoshkovoi lazernoi naplavki [The formation of NiCrBSi–TiC composite coating with increased abrasive wear resistance by gas powder laser cladding]. Uprochnyayushchie tekhnologii I pokrytiya – Hardening technology and coatings , 2013, no. 11 (107), pp. 38–44. 15. Tushinskii L.I., Bataev V.A., Potapov V.M., Bataev A.A., Timofeev A.P. Stoikost’ uprochnennykh materialov v usloviyakh kontaktnogo nagruzheniya [Life of hardened materials under the conditions of contact load]. Metallovedenie i termicheskaya obrabotka metallov – Metal Science and Heat Treatment , 1988, no. 5, pp. 36–38. (In Russian) 16. Yonezu A., Xu B., Chen X. An experimental methodology for characterizing fracture of hard thin films under cyclic contact loading. Thin Solid Films , 2010, vol. 518, iss. 8, pp. 2082–2089. doi: 10.1016/j.tsf.2009.07.199 17. Ramírez G., Mestra A., Casas B., Valls I., Martínez R., Bueno R., Góez A., Mateo A., Llanes L. Influence of substrate microstructure on the contact fatigue strength of coated cold-work tool steels. Surface and Coatings Technology , 2012, vol. 206, iss. 13, pp. 3069–3081. doi: 10.1016/j.surfcoat.2011.12.012 18. Ramírez G., Tarrés E., Casas B., Valls I., Martínez R., Llanes L. Contact Fatigue Behavior of PVD-Coated Steel. Plasma Processes and Polymers , 2009, vol. 6, iss. Supplement 1, pp. S588–S591. doi: 10.1002/ppap.200931501 19. Tarrés E., Ramírez G., Gaillard Y., Jiménez-Piqué E., Llanes L. Contact fatigue behavior of PVD-coated hardmetals. International Journal of Refractory Metals and Hard Materials , 2009, vol. 27, iss. 2, pp. 323–331. doi: 10.1016/j.ijrmhm.2008.05.003

RkJQdWJsaXNoZXIy MTk0ODM1