Obrabotka Metallov 2014 No. 4

ОБРАБОТКА МЕТАЛЛОВ № 4 (65) 2014 59 ТРУДЫ КОНФЕРЕНЦИИ of Seventh International Symposium on Ballistics, Hague, Netherlands, 19–21April 1983. – Hague, 1983. – P. 541–547. 13. Johnson G.R., Cook W.H. Fracture characteris- tics of three metals subjected to various strains, strain rates, temperatures and pressures // Engineering Fracture Mechanics. – 1985. – Vol. 21, iss. 1. – P. 31–48. – doi: 10.1016/0013-7944(85)90052-9 14. Hallquist J.O. LS-DYNA: Theoretical manual. – Livermore, California: Livermore Software Technology Corporation, 1998. – 498 p. 15. Kraus E.I., Shabalin I.I. Impact loading of a space nuclear powerplant // Frattura ed Integrità Strut- turale. – 2013. – Vol. 24. – P. 138–150. – doi: 10.3221/ IGF-ESIS.24.15 16. Краус Е.И., Фомин В.М., Шабалин И.И. Опре- деление модуля сдвига за фронтом сильной ударной волны // Вестник Южно-Уральского государственно- го университета. Серия «Математическое моделиро- вание и программирование». – 2014. – Т. 7, № 1. – С. 49–61. – doi: 10.14529/mmp140105. 17. Ильин А.А., Колачев Б.А., Полькин И.С. Тита- новые сплавы. Состав, структура, свойства: справоч- ник. – М.: ВИЛС-МАТИ, 2009. – 520 с. 18. Бузюркин А.Е., Гладкий И.Л., Краус Е.И. При- менение численного моделирования для определения и верификации параметров модели Джонсона-Кука при высокоскоростном деформировании титановых спла- вов // Деформирование и разрушение структурно-неод- нородных сред и конструкций: сборник материалов III Всероссийской конференции, посвященной 100-ле- тию со дня рождения академика Ю.Н. Работнова, 26–30 мая 2014 г. – Новосибирск: Изд-во НГТУ, 2014. – С. 17. 19. Steinberg D.J. Equation of State and Strength Properties of Selected Materials: Report N UCRL- MA-106439. Change 1 / University of California, Lawrence LivermoreNational Laboratories. –Livermore, 1996. – 69 p. OBRABOTKAMETALLOV (METAL WORKING AND MATERIAL SCIENCE) N 4(65), October – December 2014, Pages 52–60 Numerical simulation of gas turbine engines fan blades emergency breakage Buzyurkin A.E. 1 , Ph.D. (Physics and Mathematics), e-mail: buzjura@itam.nsc.ru Gladkiy I.L. 2 , Ph.D. (Engineering), e-mail: dersu123@gmail.com Kraus E.I. 1 , Ph.D. (Physics and Mathematics), e-mail: kraus@itam.nsc.ru 1 Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, 4/1 Institutskaya str., Novosibirsk, 630090, Russian Federation 2 OJSC “Aviadvigatel”, 93 Komsomolski prospect, Perm, GSP, 614990, Russian Federation Abstract One of the criteria for evaluating the reliability of the aviation gas turbine engine housing is their ability to retain broken elements of the rotors and, primarily, the fan blades. The paper presents the results of numerical simulation of deformation and fracture of the aviation gas turbine engine housing after a high-speed collision with a fan blade at its emergency breakage. Parameters of Johnson-Cook model, describing the behavior of alloys VT6, OT4 and OT4-0, is verified. Comparison with experimental data showed a good agreement for the flying residual velocity of the broken blade and forms of punched holes. It is shown that depending on the housing material, its thickness and blade breakage velocity, there is a possibility of penetration of the housing by a broken blade and its departure beyond or localization of the broken blade inside the housing. Keywords: deformation, fracture, strain rate, plasticity, LS-DYNA, Johnson-Cook model. References 1. Akimov B.M. Osnovy nadezhnosti gazoturbinnykh dvigatelei [Fundamentals of reliability of gas turbine engines]. Moscow, Mashinostroenie Publ., 1981. 207 p.

RkJQdWJsaXNoZXIy MTk0ODM1