УДК 621.791.92

ВНЕВАКУУМНАЯ ЭЛЕКТРОННО-ЛУЧЕВАЯ НАПЛАВКА ПОРОШКОВ системы титан—тантал—ниобий на титан вт1-0*

Т.В. ЖУРАВИНА, аспирант, И.А. БАТАЕВ, канд. техн. наук, доцент, А.А. РУКТУЕВ, аспирант, А.П. АЛХИМОВ, доктор техн. наук, профессор, О.Г. ЛЕНИВЦЕВА, аспирант, О.А. БУТЫЛЕНКОВА, аспирант, (НГТУ, г. Новосибирск)

Статья поступила 15 февраля 2012 года

Батаев И.А. – 630092, г. Новосибирск, пр. К. Маркса, 20, Новосибирский государственный технический университет, e-mail: ivanabataev@ngs.ru

Исследованы покрытия системы титан-тантал-ниобий, сформированные на сплаве BT1-0 методом вневакуумной электронно-лучевой наплавки. Структурные исследования проводили методом оптической и растровой электронной микроскопии. Дана оценка коррозионной стойкости наплавленного слоя. Полученные покрытия имеют сложную структуру, сформировавшуюся в процессе быстрого охлаждения. Большое влияние на структуру покрытий оказывает распределение тантала и ниобия, а также кислорода.

Ключевые слова: титан, тантал, ниобий, вневакуумная электронно-лучевая наплавка

Введение

Титан и его сплавы являются одними из наиболее перспективных материалов для применения в различных отраслях машиностроения, они широко применяются в авиа- и ракетостроении, медицине. К основным достоинствам титановых сплавов относятся высокий уровень коррозионной стойкости, низкая плотность, высокая удельная прочность [1].

Несмотря на способность титановых сплавов эффективно эксплуатироваться во многих агрессивных средах, в некоторых случаях их коррозионная стойкость является недостаточной для успешного практического применения. В частности, речь идет о ядерной энергетике и химическом машиностроении, где конструкции наиболее ответственного назначения изготавливают из сплавов ниобия или тантала. Ниобий и тантал, известные благодаря своим коррозионным свойствам, более высоким, чем у титана, отличаются также и дороговизной. На сегодняшний день стоимость порошка титана составляет ~ 4400 руб/кг, ниобия ~ 9000 руб/кг, а тантала ~ 35 000 руб/кг. В связи с этим вопрос о замене сплавов тантала и ниобия на более дешевые титановые сплавы является актуальным.

В ряде работ было показано, что сплавы систем Ti-Ta и Ti-Ta-Nb имеют значительно более высокие показатели коррозионной стойкости по сравнению с чистым титаном [2–8]. Например, в работе [2] отмечается, что сплав Ti-5 % Ta отличается особо высокой коррозионной стойкостью и при эксплуатации в ряде химических сред может служить заменителем платины. Авторы работ [3, 4] показали, что сплав Ti-40 % Ta обладает такой же высокой коррозионной стойкостью, как и чистый тантал. Широкие перспективы применения сплавов Ti-Ta-Nb в ядерной энергетике отмечают авторы работы [5]. Большой комплекс ра-

^{*} Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007–2012 годы (Гос. контракт № 16.513.11.3035).

бот, демонстрирующий высокую коррозионную стойкость сплавов системы Ti-Ta-Nb, выполнен коллективом индийских авторов, работающих в центре ядерных исследований [6–8].

В настоящей работе для повышения коррозионной стойкости титановых сплавов и снижения стоимости продукции предлагается использовать покрытия системы Ti-Ta-Nb, сформированные методом вневакуумной электронно-лучевой наплавки порошков на поверхности технически чистого титана. Особенности реализации этого технологического процесса, в том числе и его высокая производительность при формировании покрытий различного назначения и химического состава, описаны в работах [9, 10].

Методы исследования и особенности постановки эксперимента

В качестве основного материала в работе использовались пластины технически чистого титана марки ВТ1-0 с габаритными размерами $100 \times 50 \times 10$ мм. Для наплавки использовалась смесь порошков титана, тантала и ниобия со средними размерами частиц 100, 100 и 40 мкм соответственно. В качестве флюса применяли порошки СаF₂ и LiF. Перед наплавкой порошки металлов и флюса тщательно перемешивались в следующем соотношении: 26 % (масс.) Та; 26 % (масс.) Nb; 18 % (масс.) Ti; 22,0 % (масс.) СаF₂; 8 % (масс.) LiF. Поверхностная плотность насыпки составляла 0,45 г/см².

Вневакуумная электронно-лучевая наплавка проводилась на ускорителе ЭЛВ-6 производства Института ядерной физики им. Г.И. Будкера СО РАН. Были реализованы следующие режимы наплавки порошковых материалов: энергия электронов – 1,4 МэВ, ток пучка – 24 мА, мощность пучка – 33,5 кВт. Скорость перемещения образцов относительно электронного луча составляла 10 мм/с. Для ускорения процесса и обеспечения равномерности наплавляемого слоя применяли поперечное сканирование электронного пучка, обеспечиваемое за счет электромагнитной развертки. Частота сканирования составляла 50 Гц, амплитуда – 50 мм, форма тока в отклоняющем устройстве была пилообразной.

Для проведения структурных исследований в работе применяли оптический микроскоп Carl Zeiss AxioObserver A1m и растровый электронный микроскоп Carl Zeiss EVO 50 XVP, оснащенный энергодисперсионным микрорентгеноспектральным анализатором Oxford Instruments XAct. Химическое травление образцов выполняли в растворе, состоящем из 20 мл 40 %-го водного раствора КОН, 10 мл 30 %-го водного раствора H_2O_2 и 40 мл воды при температуре 80 °C. Микрорентгеноспектральный анализ проводили на полированных нетравленых образцах.

Для проведения испытаний на коррозионную стойкость наплавленный слой вырезали из основного материала. В качестве контрольного материала использовали титан ВТ1-0 (основной металл). Испытания проводили в растворе, состоящем из 10 % (об.) плавиковой кислоты, 10 % (об.) серной кислоты и 80 % (об.) воды. Такой раствор является достаточно агрессивной средой как для титановых сплавов, так и для сплавов на основе тантала и ниобия. Коррозионную стойкость материалов оценивали по потере массы на единицу площади образца.

Результаты исследований и их обсуждение

Общий вид наплавленного электронным лучом покрытия представлен на рис. 1. В структуре покрытия можно выделить ряд характерных зон: зону наплавленного металла, основной металл и переходную зону.

Рис. 1. Поперечное сечение покрытия Ті-Та-Nb, сформированного на заготовке из технически чистого титана

91

МАТЕРИАЛОВЕДЕНИЕ

Рис. 2. Строение дендритов в нижней (a) и верхней (b) зонах покрытия

Наплавленный слой имеет сложное строение, обусловленное неравновесными условиями кристаллизации расплава. Отличительной особенностью материала наплавки является дендритная структура, сформированная в процессе высокоскоростного охлаждения (рис. 2, а, б). На фоне дендритов при травлении выявляются границы зерен. Следует отметить, что форма и размеры зерен коррелируют с формой и размерами дендритов. В нижней части наплавленного слоя, где в результате ускоренного теплоотвода в материал основы сформировались вытянутые дендриты, зерна также имеют вытянутую форму, примерно соответствующую длине самих дендритов. В верхней части покрытия в результате изменения условий охлаждения были сформированы дендриты, ширина и длина которых примерно соизмеримы. Форма и размеры зерен в этой части покрытия близки к полиэдрической. Следует отметить, что условия охлаждения в верхней части наплавленного металла могли приводить к ориентации дендритов и зерен в направлении, перпендикулярном плоскости шлифа.

Длительное (около 5 мин) травление позволило выявить особенности дислокационной структуры покрытия. Внутри крупных зерен формируются более мелкие субзеренные построения, границы которых выявляются в виде скоплений мелких точек (рис. 3).

Внутризеренное строение наплавленного материала в значительной степени зависит от характера распределения тантала и ниобия, а также кислорода. Следует отметить, что тантал и ниобий стабилизируют бетта-фазу титана, в то время как кислород является одним из сильнейших альфастабилизаторов. Результаты микрорентгеноспектрального анализа, проведенного с большой площади (около 2 мм²), представлены в таблице.

Рис. 3. Особенности зеренно-субзеренной структуры наплавленного слоя

Химический состав покрытия

Химический элемент	Ti	Та	Nb
Содержание, % (вес.)	67.3	16.5	16.2

В связи с низкой точностью метода энергодисперсионного микрорентгеноспектрального анализа в области малых энергий количественное содержание кислорода в наплавленном слое не оценивалось. Другая проблема, также снижающая точность количественного определения кислорода, заключается в близком расположении М-серии титана с Кα кислорода. В то же время косвенно содержание кислорода в покрытии

Рис. 4. Спектры, зафиксированные методом микрорентгеноспектрального анализа на глубине 20 мкм (*a*); 500 мкм (*б*) и в основном металле (*в*), и фотографии микроструктуры покрытия на глубине 20 мкм (*c*) и 500 мкм (*д*)

можно оценить, анализируя характер полученных спектров (рис. 4, a - b).

Анализ представленных спектров свидетельствует о том, что интенсивность пика кислорода является максимальной в поверхностном слое покрытия, а в основном материале кислород практически отсутствует.

Сопоставляя данные химического состава покрытия с результатами структурных исследований, можно сделать вывод о том, что слой толщиной 30...60 мкм, образованный вблизи поверхности наплавленного металла, существенно отличается своим строением от основной части покрытия. Несмотря на наличие флюса в процессе наплавки была возможность взаимодействия расплавленного металла с кислородом атмосферы. Результатом этого процесса могло явиться формирование тонкого поверхностного слоя, в котором альфа-фаза титана является значительно более стабильной по отношению к бетта-фазе. Таким образом, в процессе быстрого охлаждения наплавленного металла в поверхностном слое сформировалась типичная игольчатая структура α' - или α'' -мартенсита (рис. 4, *г*). Характерная структура остальной части покрытия представлена на рис. 4, *д*. В связи с высокой концентрацией тантала и ниобия и пониженной концентрацией кислорода в этой части покрытия могла сформироваться структура смешанного типа (закаленные α - и β -фазы). ОБРАБОТКА МЕТАЛЛОВ

Рис. 5. Карта распределения ниобия в переходном слое между материалом покрытия и основой (*a*) и микроструктура переходного слоя (б, в)

Диффузионный слой, образующийся между материалом покрытия и сплавом BT1-0, имеет малую толщину. Карта распределения ниобия в этом слое представлена на рис. 5, *а*. Относительное низкое содержание ниобия и тантала в этой зоне было недостаточным, чтобы стабилизировать бетта-фазу при комнатной температуре. Таким образом, на этом участке сформировалась мартенситная структура α' (или α'') типа (рис. 5, *б*, *в*).

Результаты оценки коррозионной стойкости наплавленного электронным лучом материала и

титана ВТ1-0 представлены на рис. 6. Из рисунка видно, что скорость потери массы материала покрытия значительно ниже, чем скорость потери массы титана технической чистоты.

Рис. 6. Зависимость потери массы материалов от времени их пребывания в коррозионной среде

Заключение

Вневакуумная электронно-лучевая наплавка является эффективным методом получения коррозионно-стойких покрытий системы Ti–Ta– Nb на заготовке из титана BT1-0. Покрытие обладает сложной структурой, сформированной в результате неравновесного охлаждения расплава. В структуре покрытия на разных масштабных уровнях можно выделить следы дендритного строения, зеренные и субзеренные границы, закаленные участки с игольчатой структурой. Для повышения однородности покрытия рациональным является проведение дополнительной термообработки. Коррозионная стойкость полученного покрытия значительно превосходит коррозионную стойкость сплава BT1-0.

Список литературы

1. *Properties* and Selection: Nonferrous Alloys and Special-Purpose Materials [Электрон. ресурс]: Volume 2. – (ASM Handbook). – Электрон. дан. – ASM International, 1992. – 3470 с.

2. *Титановые* сплавы. Металлография титановых сплавов. – М: Металлургия, 1980. – 464 с.

3. *Mardare A.I.* A combinatorial passivation study of Ta-Ti alloys / A.I. Mardare, A. Savan, A. Ludwig, A.D. Wieck, A.W. Hassel // Corrosion Science. – 2009. – Vol. 51. – P. 1519–1527.

4. De Souza K.A. Influence of concentration and temperature on the corrosion behavior of titanium,

МАТЕРИАЛОВЕДЕНИЕ

ОБРАБОТКА МЕТАЛЛОВ

- C_M

titanium-20 and 40 % tantalum alloys and tantalum in sulfuric acid solutions / K.A. de Souza, A. Robin // Materials Chemistry and Physics. -2007. - Vol. 103. - P. 351–360.

5. *Raj B*. Materials development and corrosion problems in nuclear fuel reprocessing plants / B. Raj, U. K. Mudali // Progress in Nuclear Energy. – 2006. – Vol. 48. – P. 283–313.

6. *Karthikeyan T.* Solidification structure in Ti–5Ta– 1.8Nb weld / Karthikeyan T., Dasgupta A., Saroja S., Vijayalakshmi M. // Science and Technology of Welding and Joining. – 2009. – Vol. 14. – P. 597–605.

7. *Karthikeyan T*. Studies on weldability of Ti–5Ta– 1.8Nb alloy / T. Karthikeyan, A. Dasgupta, S. Saroja, M. Vijayalakshmi, V. S. Raghunathan // Journal of Nuclear Materials. – 2004. – Vol. 335. – P. 299–301.

8. Shankar A.R. Effect of heat treatment on the corrosion behaviour of Ti-5Ta-1.8Nb alloy in boiling

concentrated nitric acid / A.R. Shankar, R.K. Dayal, R. Balasubramaniam, V.R. Raju, R. Mythili, S. Saroja, Vijayalakshmi M., V.S. Raghunathan // Journal of Nuclear Materials. – 2008. – Vol. 372. – P. 277–284.

9. *Teplykh A.M.* Boride coatings structure and properties, produced by atmospheric electron-beam cladding / M.G. Golkovskiy, A.A. Bataev, E.A. Drobyaz, S.V. Veselov, E. D. Golovin, I.A. Bataev, A.A. Nikulina // Advanced Materials Research. – 2011. – Vol. 287–290. – P. 26–31.

10. *Golkovsky M.G.* Cladding of tantalum and niobium on titanium by electron beam, injected in atmosphere / M.G. Golkovsky, T.V. Zhuravina, I.A. Bataev, A.A. Bataev, S.V. Veselov, V.A. Bataev, E.A. Prikhodko // Advanced Materials Research. – 2011. – Vol. 314–316. – P. 23–27.

Non-vacuum electron beam cladding of titanium, tantalum and niobium powders on titanium substrate

T.V. Zhuravina, I.A. Bataev, A.A. Ruktuev, A.P. Alkhimov, O.G. Lenivtseva, O.A. Butylenkova

The coatings Ti-Ta-Nb on titanium substrate produced by non-vacuum electron beam treatment were studied. Structure of the coatings was investigated by optical microscopy and scanning electron microscopy. Corrosion resistance of the coatings was estimated. The coatings have a complex structure due to rapid cooling. Distribution of tantalum, niobium and oxygen has a great influence on structure of the coatings.

Key words: titanium, tantalum, niobium, non-vacuum electron beam cladding.

№ 1 (54) 2012 95