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A B S T R A C T

Introduction. Reducing the level of damage accumulation during pressure treatment of materials at elevated 
temperatures in creep and close to superplasticity modes in the manufacture of parts can signifi cantly increase 
its service life in the cold state. Finding temperature and power conditions leading to a reduction in damage of 
material during the production process and operation is an important task. The purposes of the work: 1) to show 
the possibility of using the Sosnin-Gorev creep and damage model for alloys with a non-monotonic dependence 
of strain at fracture on diagrams with creep curves; 2) to carry out comparative analysis of damage accumulation 
under conditions of uniaxial tension at constant stress and at constant strain rates for alloy with such a dependence. 
Research methods. Used scalar damage parameter is equated to the normalized deformation, i.e. to the ratio of 
the current strain to the fracture strain. To fi nd the coeffi cients of relations creep and damage, the similarity of the 
creep curves in the normalized values “normalized strain – n ormalized time”, i.e. the presence of single normalized 
curve of damage accumulation is checked. The least squares method is used to approximate the experimental data. 
Numerical integration methods are used for comparative analysis of deformation modes. Results and discussion. 
Determination of the parameters of the creep and damage equations by the method of a single normalized curve is 
carried out on the example of experimental data for steel 12Kh18N10T  (12Cr18Ni10Ti) at 850 °C, which has a 
minimum of fracture strain in diagrams with creep curves. Analysis of the static and kinematic modes of deformation 
for studied material showed that damage accumulation in both cases is practically the same for stresses close to the 
stress at which this minimum is reached. If the stresses are lower, then the lower level of damage accumulation will 
be in the kinematic mode; if the stresses above the minimum value, then the static mode will lead to a lower level 
of damage accumulation. Application. The obtained results can be useful when choosing rational modes of forming 
structural elements from alloys with a non-monotonic dependence of the fracture strain on stress, as well as in 
evaluating it for long-term strength during operation.
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fracture strain on stress. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, 
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Introduction

To reduce the damage of materials during its pressure shaping, the modes of high-temperature creep 
and close to superplasticity have long been used. The choice of thermal-power loading modes that are 
rational from the point of view of damage accumulation in the manufacture of structural elements leads 
to an increase in the service life of the fi nal product in the cold state. Finding such modes of shaping in 
the production of metal structures is an important task. Residual resource assessment during operation is 
another relevant area of research.
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Detailed reviews of creep models that take into account the accumulation of damage in the material are 
carried out in [1–4]. Models of damage accumulation are divided into phenomenological and physically 
based ones. The founder of the phenomenological approach is L. M. Kachanov [5]. He introduced the 
concepts of “continuity” or “cracking”, describing the state of the material with one structural parameter 

( )tψ  ( 0 1≤ ψ ≤ , t – time). The mechanisms of damage and the physical nature of this damage parameter 
are not specified. Later Yu. N. Rabotnov introduced the parameter  ( 0 1q≤ ≤ ) “quite conditionally”, 
assuming that when 0q =  the material is considered not damaged, and when 1q =  microscopic cracks 
begin to form, which actually means its destruction [6]. Even later Yu. N. Rabotnov generalizes the model 
by introducing several such damage parameters without giving it a specific physical meaning. Such 
parameters can describe various aspects of damage accumulation, for example, consider the aggressiveness 
of the environment [2]. 

Physically substantiated models take into account the microstructure of the material, the density of 
pores or dislocations in the process of damage accumulation [7–9]. Since most materials have anisotropic 
properties, the damage, as a rule, has a tensor or vector form [2, 4, 10]. However, until now, the introduction 
of vectors and damage tensors into the models is limited, since the calculations are significantly complicated. 
Various creep models with a scalar damage parameter are actively used to this day, and the introduction of 
the corresponding equivalent stress into the equations in some cases makes it possible to take into account 
the presence of anisotropy properties. According to the model of Yu. N. Rabotnov, the constitutive relations 
for the uniaxial stress state have the following form [11]:

	 1 2 1 2( , , , , ..., ),      ( , , , , , , ..., )
c

ci
c n c n

dqd
f T q q q T t q q q

dt dt
ε

= σ = ϕ σ ε ,	 (1)

where cε  – irreversible creep strains, T – temperature, t – time, iq  – structural parameters. In the case of a 
single damage parameter q , the system (1) can be concretized in the following form [6]:

1 2
,      

(1 ) (1 )

n gc B Bd dq
dt dtq q

ε ω
κ κ

σ σε
= =

− −
.

Here the parameters , , ,B B n gε ω , 1 2,κ κ are determined on the basis of experimental data and generally 
depend on the temperature. It should be noted that this system of equations has arbitrariness, since it is 
impossible to determine the parameters of the equations from experimental data independently of each 
other [6]. There is no uniform method for determining the parameters. There is no unified method for 
determining the parameters, and when choosing it, researchers, as a rule, are guided by the desire to describe 
the experimental data as best as possible.

To describe creep and damage accumulation, authors [12] introduce the value of the dissipation power 
c

A ij ijW = ε σ , where c
ijε , ijσ  are the components of the creep strain and stress tensors (symbol “point” 

denotes the derivative with respect to time t), while it is assumed that the work of dissipation at the time of 
fracture is constant * constA =  (energy approach in the version of O. V. Sosnin). Using the phenomenological 
approach of Yu. N. Rabotnov to describe deformation, authors [13] generalize the application of the energy 
approach of the kinetic equations on the case in which the creep strain at fracture time isn’t constant value 

* constcε ≠  ( * constA ≠ ).
This paper demonstrates the possibility of describing deformation processes using the Sosnin - Gorev 

model [13] in the case when the function * ( )cε σ  on the “strain – time” creep diagrams at stresses constσ =  
is non-monotonic. The method of determining the parameters of the constitutive equations of creep and 
damage is described.

The choice of deformation modes in order to reduce the level of damage accumulation to increase the 
product life during production and operation is an urgent task. The papers of I. Y. Tsvelodub and  
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K. S. Bormotin theoretically and numerically substantiate the use of kinematic modes with a constant creep 
strain rate within the framework of the energy approach * constA =  [14–16]. However, structural alloys 
can be described by an energy variant of the creep theory * constA =  in a fairly narrow range of rates and 
temperatures.

In [17], in order to assess the residual operational life, two deformation modes under uniaxial tension 
conditions were studied for alloys having a monotonic dependence of the ultimate strain (fracture strain) on 
stress (AK4-1 (Al–Cu–Mg–Fe–Ni), 250°C; D16T (Al–Mg–Cu), 250°C; VT9 (Ti–Al–Mo–Zr), 600°C; steel 
09G2S-12 (Fe–Si–Cu–Cr–Ni–C), 730°C; 3V (Ti–Al–V), 20°C). The deformation modes at constant stresses 
and at constant strain rates corresponding to these stresses were compared. It is shown analytically and 
numerically that if the dependence on creep diagrams * ( )cε σ  decreases monotonically with increasing σ , 

then the accumulation of damage is less in kinematic modes n/ =constcd dt Bεη = ε = σ . Such materials 

include alloys that are described by the energy approach of the creep theory * constA =  and the condition 

g n≥  is satisfied. For alloys, in which dependence * ( )cε σ  monotonically increases in diagrams with creep 

curves ( )c tε , the accumulation of damage is less in the mode constσ = .

The purpose of this work is to carry out a comparative analysis of two deformation modes of tensile rods 
for an alloy with a non-monotonic dependence of the ultimate strain using the kinetic equations of creep and 
damage: static constσ =  and kinematic n =constBεη = σ .

Theory and methods

Constitutive relations of creep and damage

Equations (1) in [13] are defined as

	
1

( , )

(1 )

Af TdA
dt q κ

σ
=

−
,        

2

( , )

(1 )

c Òdq
dt q κ

Φ σ
=

−
,         (0 1)q≤ ≤ .	 (2)

Here 
0 0

ct c
A ij ijA W dt d

ε
= = σ ε∫ ∫ . 

Replacing q  by ( )2 11/( 1)1 (1 ) κ −κ +− − ω , the relations (2) can be reduced to the following [13]

	
( , )

(1 )
A

m
f TdA

dt
σ

=
− ω

,            
( , )

(1 )
c

m
Td

dt
ϕ σω

=
− ω

,	 (3)

thus eliminating the arbitrariness in determining the coefficients of the constitutive relations. Under 
conditions of a uniaxial state, the parameter (0 1)ω ≤ ω ≤  must satisfy the equation of a single normalized 
curve

	 1(1 ) (1 )m+− ω = − τ ,	 (4)

where 2 0
( 1) ( , )

t
c T dtτ = κ + Φ σ∫  or 

0
( 1) ( , )

t
cm T dtτ = + ϕ σ∫  is the normalized time.

Integrating (4), for  we obtain

	
1

11 (1 ( 1) ( , ) )
t

m
c

o

m T dt +ω = − − + ϕ σ∫ .	 (5)
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For constσ =  from (5) we have

	
1

1 ( , )
1 [1 ( 1) ( , ) ] ,      

( , )
Am

c
c

f T
m T t A

T
+ σ

ω = − − + ϕ σ = ω
ϕ σ

,	 (6)

	 */ ,      ( , ) / ( , )A cA A A f T T∗ω = = σ ϕ σ ,	 (7)

	 * *
1

/ ,      t
( 1)  ( ,T)c

t t
m

τ = =
+ ϕ σ

 .	  (8)

Here *t  is the time of fracture. 

If stress constσ = , then damage parameter is */ /c cA A∗ω = = ε ε  and the verification of equations (3) 

should be carried out in the normalized values * * */ / ,      t/tc cA Aω = = ε ε τ = .
If the material, in addition to the stages of steady-state creep and softening, has a hardening stage, then 

(3) can be rewritten as [13]

	
1

( , )

(1 )
A

A m
f TdA

W
dt α α+

σ
= =

ω − ω
,               

1

( , )

(1 )
c

m
Td

dt α α+
ϕ σω

=
ω − ω

,	 (9) 

where α  is the hardening parameter. In this case, in normalized values * *
c cA Aω = ≡ ε ε , *t tτ = , 

equation of a single normalized curve must also be fulfilled for ω  in the form 

	 ( 1) 1(1 ) 1mα+ +− ω = − τ .	 (10)

Integrating (9) with constσ =  instead of (6) we obtain
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1 1
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( , )

( , ) ( , )
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Amc
c
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T T
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+

  σ
ω = − − + α + ϕ σ = ω   ϕ σ 

σ σ
ε = ω ε =

σ ⋅ ϕ σ σ ⋅ ϕ σ

	 (11)

It follows from the analysis of (11) that in the uniaxial case the parameter characterizes the deformability 
of the material, i.e. *

c cω = ε ε  – reduced deformation, and the dependence *
cε  on stress σ  can be arbitrary.

In the case of a complex stress state, equations (9) can be generalized [13, 18]:

	
1

( , )

(1 )
A e

A m
f TdA

W
dt α α+

σ
= =

ω − ω
,            

t

ij
o

,c
ijA dt= σ ε∫  	  (12)

	  *
1

( , )

(1 )
c e

m
Td

dt α α+
ϕ σω

=
ω − ω

,               0 1≤ ω ≤ ,	  (13)

	 ,
c
ij e A

ij
ij e

d W
dt

ε ∂σ
η = = λ λ =

∂σ σ
.	 (14)

Here *e eσ , σ  are the equivalent stresses. 

The stress eσ .can be taken, for example, the stress intensity according to Mises 1/2(3 / 2)e i ij ijσ = σ = σ σ , 

ijσ  – the components of the stress deviator. The choice of an equivalent stress (the criterion of long-term 

strength), as already noted, allows us to take into account the anisotropic nature of damage accumulation 
for various stress states. The analysis of the criteria for long-term creep strength is given in [19–21].
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Entering normalized values * * */ / ,      t/tc cA Aω = = ε ε τ =  in the analysis of experimental creep 

curves makes it possible to determine the parameter ω  through the values * *, , ,c ct tε ε  measured in the 
experiment, while it remains in no way related to the microstructure of the material (with changes in the 
density of pores, dislocations, vacancies). The fracture in the experiment is understood as the separation of 
the sample into parts.

The geometric similarity of the curves (10) at constant stresses in the normalized values was obtained 
for a number of alloys [12, 13, 22–24]. Publications [25, 26] demonstrate the possibility of using equations 
(12)–(14) to describe materials with a monotonic dependence * ( )cε σ  in creep diagrams ( )c tε . In [25] this is 

shown by the example of torsion of rods made of an alloy without the first creep stage ( 0α = ) AK4-1  
(Al-Cu-Mg-Fe-Ni) at 250T = °С, while the value of the ultimate strain intensity *( )c

i iε σ  increases mono-

tonically. Publication [26] studied a titanium alloy 3B (Ti–Al–V) at 20T = °C, which has all three pro-
nounced creep stages. Equations (12)–(14) in the variant * constA =  describe it, while the ultimate strain 
intensity, on the contrary, monotonically decreases with increasing of iσ . The experimental data of both 
alloys are densely located near the “single curve”. The possibility of such grouping into a normalized curve 
of test data with a non-monotonic dependence *( )c

i iε σ  is discussed in [22, 23], but the procedure for obtain-
ing the parameters of equations (12)–(14) is not given.

Method for determining the parameters of kinetic equations

Publications [12, 24, 27] discuss the methods for finding the coefficients of kinetic equations (12)–
(14). As a rule, the investigated alloys have a monotonic dependence * ( )cε σ  on the experimental diagrams. 
If the dependence is non-monotonic, then in these works it is usually averaged and assumed to be 
monotonic. 

The exponent m describes softening and is determined by the third section of a single normalized 
creep curve: if the material has a hardening stage, then after the inflection point located on steady-state 
section; if the first stage is absent, then only along the last section. If 0α = , then after taking the logarithm 
(4) we have

( ) ( )( 1) ln 1 ln 1m + − ω = − τ .

This relation is the equation of a straight line in logarithmic coordinates ( ) ( )ln 1 ln 1− ω − − τ . Its slope 

determines the exponent m. Here * */ ; / ;c c
k k k kt tω = ε ε τ =  index k means the number of the creep curve 

constkσ = σ = ; c
kε , kt  are the creep strain and time at the point of transition to the third stage; *

c
kε , *kt

are the ultimate strain and fracture time of the sample. The parameter m is found by averaging its values 
obtained at different values kσ = σ . If 0α = , then the parameter m in (4) can be found by the least squares 
method applied to experimental points in normalized coordinates.

Publication [27] demonstrates the obtaining of the exponent α  on the basis of experimental data on ten-
sion and compression using the dependence of the type of the strain hardening ( ( , )c

cf T−αε = ε σ ). When 

found α  in (9), it is accepted ( , ) /c
d

T
dt

αω
= ϕ σ ω . Integrating this equation from 0ω =  to the current  

values ω  и t, after subsequent logarithm, we come to the equation of the straight line

( ) ( )( 1) ln ln[( 1) ( , )] ln 1c Tα + ω = α + ϕ σ + − τ .
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The slope of this straight line similarly to the exponent m determines the exponent α : after processing 
and averaging the experimental data of the first sections of the creep curves at constkσ = σ =  or according 
to the data of the normalized curve ( )ω τ  to the transition point to the steady-state stage by the least squares 
method.

Dependences of a power-law or exponential form can be selected as functions ( , )cf Tσ  and ( , )c Tϕ σ  

[2, 13]: nBσ  ; 1 exp( )B βσ ; 2
3(exp( ) 1)B βσ −  and etc. If ( , ) n

cf T Bεσ = σ , then the coefficients ,B nε  are 

found from the experimental data at the steady-state stage of the curve ( )c tε at constσ =  (in this case, in 

(12)–(14) 1( , ) ,n
A A Af T B B B+

εσ = σ = ). After taking the logarithm of the ratio c n
ABε = σ , we get 

ln( ) ln( ) lnc
AB nε = + σ . Averaging the n obtained for different constkσ = σ = , we calculate the values of 

the coefficients n and AB . If ( , ) g
c T Bωϕ σ = σ , then from (11) it is follows ( )* 1 / ( 1)( 1) gt m Bω= + α + σ . 

Taking the logarithm of the last expression, we obtain the equation of the straight line 
*ln( ) ln(( 1)( 1) ) ln( )t m B gω= − + α + − σ  for finding the coefficients ,g Bω .
The functions ( , )cf Tσ  and ( , )c Tϕ σ  taken in a power-law form allow us to describe the deformation of 

materials with a monotone dependence of the ultimate dissipation work *A  (strain *
cε ) on stress. Publications 

[25, 26] shown this using the example of alloys AK4-1 (Al–Cu–Mg–Fe–Ni) at 250T = °C and 3V (Ti–
Al–V) at 20T = °C, which were satisfactorily described by power functions within the approach of a single 
normalized damage curve. 

Analysis of the creep tests results shows that the function * ( )cε σ  for some alloys may be non-monotonic, 
namely, in a certain stress range have a minimum (12Cr18Ni10Ti, 850°C; 15Cr1Mo1V, 565 °C) or a 
maximum (Ti-Al-Mn, 500°C; Al-Zn-Mg-Cu, 165ºC; Al-Mg-Mn, 165ºC; Al-Mg-Sc, 500 °C) [22, 23, 28–
31]. The energy model of the kinetic equations of creep and damage in the initial version * constA =  is 
applicable only in a narrow range of temperatures and stresses. The non-monotonic form of the function 

* ( )cε σ  also complicates the description of deformation processes using models that take into account the 

microstructure. Authors of [2, 22, 28, 30] discuss the possibility of a mathematical description of such 
materials using a phenomenological approach.

Let consider a technique for finding the coefficients of kinetic creep equations with a scalar damage 
parameter for materials with a non-monotonic function * ( )cε σ . Publication [28] studied steel 12Cr18Ni10Ti 
at 850T = °C. Uniaxial tensile tests were carried out on the equipment of the Institute of Mechanics of 
Moscow State University. The monograph by A. M. Lokoshchenko [32] gives a description of a typical 
IMekh-5 device used for carrying out experiments on tension and torsion at creep. The experiments were 
carried out on tubular samples with an outer diameter of 12 mm, a wall thickness of 0.5 mm and a working 
length of 70–100 mm at a constant temperature of 850 ° C. In the tests, a constant acting load was applied 
to the sample. The change in the cross-section during creep was assumed to be insignificant, and therefore 
it was assumed that at a constant load, the stress in the cross-section is constant until fracture. The original 
curves at 39,2; 49; 58,8; 78,4σ =  MPa are published in [33]. From 2 to 8 tests were performed for each 

stress. The averaged results [28] showed that at a stress of 60σ ≈ MPa, the dependence * ( )cε σ  has a 

minimum in diagrams with creep curves ( )c tε . Similarly to [28], we will use the functions 

( ) sh( / )A Af B cσ = σ ⋅ σ  and ( ) g
c Bωϕ σ = σ  to determine the coefficients in equations (12)–(14). Note that 

the authors [28] used a dependence of type (2) with different exponents in the denominators to approximate 
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the experimental data. We assume that there is no hardening, i.e. 0α = . It follows from (11) that the 
fracture strain is

	 *
sh( / )

( )c A
g

B c
Bω

σ
ε σ = ⋅

σ
.	 (15)

Differentiating twice * ( )cε σ , we get

	
2

*
2 1 2

( 1) 2
sh ch

c
A
g

d B g g g
c c cd B c+

ω

 ε  σ +  σ σ   = + −      σ    σ σ   
.	  (16)

Let transform the expression in the square brackets of the right side of (16). We decompose the hyperbolic 
sine and cosine into a Taylor series and group the coefficients at the same degrees, omitting the multiplier 
before the bracket:

1   : ( 1) /g g c− ;

2σ : 
3

1 ( 1) 2
1

3 ! 2 !

g g g

c

+ + − 
 

4σ : 
5

1 1 ( 1) 2

3 ! 5 ! 4 !

g g g

c

+ + − 
 

…….

2kσ : 
2 1

1 1 ( 1) 2

(2 1) ! (2 1) ! (2 ) !k
g g g

k k kc +
 +

+ − − + 
             ( Nk ∈ )

The obtained coefficients at 2kσ can be generalized in a following form 

	 2
2 2 1

1
( 2 ) 2

(2 1) !
k k

a g k g k
c k+

 = − − + +
,          0,1, ... ,k N= .	 (17)

As a rule, the coefficient 2g > . The coefficients 2ka  are always greater than zero, except for the case 
when the parameter g  is in the range 2 2 1k g k< < + . In other words, all coefficients 2ka  are positive, 
except for one. However, the contribution of this negative term to the total sum in the required range of 
stresses and values of parameter c is small compared to the rest of the terms, and we can assume that 

2
*
2

0
cd

d

ε
≥

σ
. Note that if g  turns out to be in the range 2 1 2k g k− < < , then the expression in square brackets 

(17) is always greater than zero and all the terms of the series are positive. From the condition * 0
cd

d
ε

=
σ

 we 

get the equation cth( / )c g cσ ⋅ σ = ⋅ , solving which we find the minimum.
Taking the logarithm of the expression for the creep strain rate at the steady-state stage sh( / )AB cη = σ , 

we obtain the equation of the straight line for finding the parameters AB  and c : ln( ) / ln( /2)Ac Bη ≈ σ + .
From (8) (or (11) at 0α = ) follows

	 ( )* 1 / ( 1) gt m Bω= + σ .	 (18)
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After taking the logarithm (18), the equation of the straight line for finding ,g Bω  is rewritten as: 

*ln( ) ln(( 1) ) ln( )t m B gω= − + − σ .

Modes of deformation under tension of rods

Let’s consider the process of damage accumulation for two modes of deformation under tension of rods 
made of an alloy with a non-monotonic dependence * ( )cε σ  on the example of steel 12Cr18Ni10Ti. Elastic 

strains are neglected. In view of the fact that in (12)–(14) ( ) sh( / )A Af B cσ = σ ⋅ σ  and ( ) g
c Bωϕ σ = σ , the 

expression for the creep strain rate is written as:

	
1

sh( / )

(1 )

c
A

m
B cd

dt α α+
σε

=
ω − ω

.	 (19)  

In the case of mode 1 ( 0 constiσ = σ = ), it follows from (11) that

 ( ) ( )( )
1/(1 )1/( 1)

01 1 1 1
mgm B t

+α+
ω

 
ω = − − + α + σ 

 
 

and

	 0

0

sh( / )
( ) ( )c A

g
B c

t t
Bω

σ
ε = ω

σ
.	 (20)

In the case of mode 2 ( 0 0sh( / ) constAB cη = σ = ), it follows from (12), (14) that 

( )1
0sh( / ) 1 /

m
Ac Bα+ ασ = − ω ω η  

and 

	 2ln 1n nc F F σ = + + 
 

,	 (21)

where ( ) ( )1 1
0 0( ) 1 / 1 sh( / )

m m
n AF B cα+ α α+ αω = − ω ω η = − ω ω σ . Substituting the expression for σ  in 

(13), we obtain the equation for finding of ω :

	 2
1

ln ( ) ( ( )) 1
(1 )

g

n nm

Bd
c F F

dt
ω

α α+
ω   = ω + ω +    ω − ω

. 	 (22)

To numerically solve (21), (22), one can use, for example, the Runge-Kutta method.
The number of deformation modes can be considered much more. In [34], in relation to the problems of 

shaping a hemispherical shell from a flat workpiece, the modes of deformation under the action of constant 
pressure, linearly increasing pressure, or when the law of variation of the deflection in time is specified is 
investigated.

Results and discussion

Determination of the parameters of steel 12Cr18Ni10Ti

Experimental data for steel 12Cr18Ni10Ti show that the fracture strain *
cε  in the stresses range from  

40 MPa to 80 MPa first decreases monotonically with increasing stress, and at 0 60σ ≈  MPa begins to 

increase monotonically. In Fig. 1, a points 1–4 show the experimental dependences ( )c tε  corresponding to 
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Fig. 1. Experimental data (points) and approximation dependences (lines) 1–4 for 
steel 12Cr18Ni10Ti at temperature 850T = °C and σ = 39.2; 49; 58.8; 78.4 MPa. 
Dashed lines – approximation at steady-state creep; solid lines – approximation 
with considering the damage (a); experimental data (points) and approximation 

(line) in the coordinates “ln (η) – σ” corresponding to the steady-state creep (b)

                                   a                                                                          b

39,2; 49; 58,8; 78,4σ = MPa. In Fig. 1, b these data are rebuilt in the coordinates ln( )η − σ  to find the 
coefficients of the second creep stage. It can be seen that the experimental points are located near a straight 
line ln( ) a bη = σ + . The coefficients a  and b  were found using the least squares method. Then the 

coefficients 1 /c a=  and 2 exp( )AB b=  were determined. As a result, the values of 42,183 10AB −= ⋅  h–1 
and 18, 6c =  MPa were obtained; the dashed lines in Fig. 1,a is an approximation by the dependence 

sh( / )AB cη = σ with the found values AB  and c . Pearson’s correlation coefficient (linear pair correlation 
coefficient) is 0, 987pk = .

In Fig. 2, a, the experimental data are rebuilt in the normalized coordinates ω − τ  * *( / , / ct tτ = ω = ε ε , 
0 1≤ τ ≤ ). The solid line is an approximation of this data by a “single curve” (4) using the least  
squares method. Coefficient m = 1.8 was obtained with the correlation index of nonlinear regression  
kr = 0.979.

The straight line in Fig. 2, b is an approximation of the experimental data of steel 12Cr18Ni10Ti, 
obtained by the method of least squares in coordinates *ln( ) ln( )t − σ . The coefficients g = 3.165 and  
Bω = 6.231·10–8 MPa–gh–1 were determined from (18). Pearson’s correlation coefficient is 0, 998pk = . 

Thus, all the parameters of equations (12)–(14) have been found.
Solid lines 1–4 in Fig. 1, a are an approximation of experiments using equations (12)–(14), where 

( ) sh( / )c Af B cσ = σ ⋅ σ  and ( ) g
c Bωϕ σ = σ  in view of coefficients found. The values *

ñε =  12.9, 10.9, 10.4, 
12.0 % are fracture strains calculated according to (15) at σ = 39.2; 49; 58.8; 78.4 MPa. 
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Fig. 2. Normalized accumulation damage curve for steel 12Cr18Ni10Ti: 
experimental data (points) and its approximation (line) (a); experimental data (points)  

and approximation (line) in logarithmic coordinates ln(t*) – ln(σ) (b)

                                             a                                                                       b

Comparative analysis of deformation modes

Let’s consider the uniaxial stretching of a rod made of steel 12Cr18Ni10Ti to a given strain value 0
cε  for 

two deformation modes.
For mode 1 from (20) we have

	 ( ) 0
0 0 0 0

0
( ) ,

sh( / )

g
c c

A

B

B c
ω

σ
σ

ω σ = ω ε σ = ε
σ

.	 (23)

For mode 2 in view of the time 0 0

0 0sh( / )

c c

A
t

B c
ε ε

= =
η σ

 and solving (21), (22) we find numerically

	 ( )0 0 0( ) ,c
ηω σ = ω ε σ .	  (24)

The creep rates η0 = 8.85·10–4; 1.5·10–3; 2.57·10-3; 7.39·10–3 h–1 corresponds to the stresses  
σ0 = 39.2; 49; 58.8; 78.4 MPa at the steady-state stage. Lines 1–4 in Fig. 3, a are dependences ( )tσ  
obtained from the solution of the system (21), (22) for these four kinematic deformation modes 0 constη =

. It can be seen that the stage of steady-state creep in Fig. 1,a is very short, as a result, the curves in  
Fig. 3,a haven’t horizontal part and immediately begin to fall. Up to the fracture in mode 2, it is actually 
impossible to perform calculations. This can be explained by the fact that at low stress values, the fracture 
strain begins to increase significantly. For example, according to (15) at 0 20σ =  MPa the strain is 

%* 0( ) 35cε σ = , and at 0 15σ =  MPa the fracture strain is already 60 %. The mode close to relaxation 
mode begins to be observed (Fig. 3, a) at such low values of stresses. However, there are no experimental 
data at such stresses, so it can be assumed that the model adequately describes the deformation in the 
stress range of 40 MPa 80≤ σ ≤ MPa. For a more accurate description of the deformation in a wider 
stress range, it may be necessary to enter a second scalar parameter or additional coefficients.
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Fig. 3. Steel 12Cr18Ni10Ti, 850 ºС. Lines 1–4 dependences σ(t) for the kinematic mode η0 = BAsh(σ0 / c) =  
= const for σ0 = 39.2; 49; 58.8; 78.4 MPa (a);dependences ω(σ0): solid lines 1, 3 – static deformation mode; 
dashed lines 2, 4 – kinematic deformation mode; lines 1, 2 correspond ε0 = 6 %, , lines 3, 4 – ε0 = 4 %,  

lines 5, 6 – ε0 = 2 % (б)

                                        a                                                                                          b

Solid lines 1, 3, 5 in Fig. 3, b are numerical calculation of 0( )ω σ  according to the formula (23); dashed 
lines 2, 4, 6 are calculation of 0( )ω σ  according to the formula (24); lines 1, 2 correspond to the strain 

%0 6cε = , lines 3, 4 correspond to the strain %0 4cε = , lines 5, 6 correspond to the strain %0 2cε = . It can 
be seen from the analysis of the graphs that for both modes the accumulation of damage at 0 65σ ≈  MPa is 
almost the same; mode 2 is preferable at 0 65σ <  MPa, since η σω < ω ; and mode 1 is the best at 0 65σ >  

MPa, since .σ ηω < ω

It can be assumed that for alloys with a maximum of function * ( )cε σ  in diagrams with creep curves ( )c tε  

[23, 29–31], deformation modes with rates corresponding to stresses from the interval at which this 
maximum is reached, on the contrary, will give the least accumulation of damage, while strains will be 
maximum. In fact, such modes can be classified as modes close to superplasticity.

Conclusions

1. The research showed the possibility of using creep equations with a scalar damage parameter in 
Sosnin-Gorev approach for alloys with a non-monotonic dependence of fracture strain on stress in diagrams 
with creep curves. The damage parameter is equated to the normalized strain, namely, to the ratio of the 
current strain to the fracture strain.

2. To determine the coefficients of the kinetic creep equations, it is necessary to check the geometric 
similarity of the experimental creep curves in the normalized values “normalized strain – normalized time”, 
i.e. the presence of a single normalized damage accumulation curve. The determination of the coefficients 
using the “single curve” method is demonstrated by the example of experimental data for steel 12Cr18Ni10Ti 
at 850°C, which has a minimum of fracture strain in diagrams with creep curves at constant stress.

3. For steel 12Cr18Ni10Ti, which has a minimum of fracture strain on creep diagrams, the damage 
parameter was calculated for two modes of uniaxial deformation: when the stress in the cross section is 
constant and when the strain rate corresponding to these stresses at the steady-state creep stage is constant. 
The analysis of the deformation modes for the material under study showed that the accumulation of damage 
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in both cases is practically the same for stresses at which this minimum is reached. If the stress is less than 
the minimum value, then the accumulation of damage is less in the kinematic deformation mode; if the 
stress is greater, the accumulation of damage is less in the static mode. The obtained conclusions about 
the advantages of deformation methods should be taken into account when choosing the modes of shaping 
structures made of alloys with a non-monotonic dependence of the fracture strain on stress, as well as when 
evaluating it for long-term strength during operation.
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