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A B S T R A C T

Introduction. Over the last decade, composite materials based on polytetrafl uoroethylene (PTFE) have been 
increasingly used as alternative materials for automotive applications. PTFE is characterized by a low coeffi cient 
of friction, hardness and corrosion resistance. However, this material has a high wear rate. A group of researchers 
attempted to improve the wear resistance of PTFE material by reinforcing it with different fi llers. The purpose of the 
work: This study experimentally investigates the dry sliding wear characteristics of a PTFE composite reinforced 
with carbon fi ber (35 wt.%) compared to SS304 stainless steel. In addition, experimental mathematical and ANN 
models are developed to predict the specifi c wear rate, taking into account the infl uence of pressure, sliding speed, 
and interface temperature. The methods of investigation. Dry sliding experiments were performed on a pin-on-disk 
wear testing machine with varying the normal load on the pin, disk rotation, and interface temperature. Experiments 
were planned systematically to investigate the effect of input parameters on specifi c wear rates with a wide range of 
design space. In total, fi fteen experiments were carried out at a 5-kilometer distance without repeating the central run 
experiment. Sliding velocities were obtained by selecting the track diameter on the disk and corresponding rotation 
of the disk. A feedforward back-propagation machine learning algorithm was used to the ANN model. Results and 
Discussion. This study fi nds better prediction accuracy with the ANN architecture having two hidden layers with 
150 neurons on each layer. This study fi nds an increase in specifi c wear rates with normal load, sliding velocity, 
and interface temperature. However, the increase is more prominent at higher process parameters. The normal load 
followed by sliding velocity most signifi cantly affects the specifi c wear rate. The results predicted by the developed 
models for specifi c wear rates are in good agreement with the experimental values with an average error close to 
10%. This shows that the model could be reliably used to obtain the wear rate of PTFE composite reinforced with 
carbon fi ber (35 wt.%) compared to SS304 stainless steel. This study fi nds scope for further studies considering the 
effect of varying ANN architectures, different amount of neurons, and hidden layers on the prediction accuracy of 
the wear rate. 

For citation: Chinchanikar S. Modeling of sliding wear characteristics of Polytetrafl uoroethylene (PTFE) composite reinforced with carbon 
fi ber against SS304. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, 
no. 3, pp. 40–52. DOI: 10.17212/1994-6309-2022-24.3-40-52. (In Russian).
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Introduction

Tribological behavior of sliding contact surfaces have prominent effect on power loss, heat generation, 
and the overall performance of the system. Researchers have made several attempts to replace conventional 
material with a composite one that is lighter and more economical, suitable for a particular application. 
Over the last decade, composite materials based on polytetrafl uoroethylene (PTFE) have been increasingly 
used as alternative materials for automotive applications.

PTFE commercially known as Tefl on is mostly preferred as an alternative material when having sliding 
contact. PTFE is characterized by a low coeffi cient of friction, hardness, and corrosion resistance. However, 
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this material has a high wear rate. A group of researchers attempted to improve the wear resistance of PTFE 
material by reinforcing it with different fi llers, considering its wide range of automotive applications having 
sliding contact [1-5].

Sonawane et al. [1] observed better sliding wear properties for 35% carbon fi ber fi lled PTFE material 
against 25% carbon fi lled PTFE when using Al6061 as countersurface. AISI 304 is the most used austenitic 
stainless steel in household, automotive and industrial applications. With a view to consider PTFE composite 
as an alternative material for automotive applications, Chinchanikar et al. [2] performed dry sliding wear 
characteristics of PTFE composite reinforced with carbon fi ber (35 wt.%) against AISI 304 stainless steel. 
Their study observed development of transfer fi lm with increase in pressure at sliding interfaces that assisted 
in decreasing specifi c wear rate. However, further studies are required on the development of transfer fi lm 
on the sliding surface considering the effect of normal load, sliding velocity, and temperature.

Unal et.al. [3] investigated the wear of PTFE, PTFE+17% glass fi ber, PTFE+25% bronze, PTFE+35% 
carbon fi ber. Their study found a decrease in friction coeffi cient for the PTFE and composites up to a certain 
normal load beyond which friction and wear rate increased. Their investigation observed the formation of 
thin and uniform transfer fi lm in the case of PTFE and disruption of transfer fi lm in the case of bronze- and 
carbon-fi lled composite.

Sachin [4] studied the wear behavior of PTFE and its composites including glass and carbon as fi ller. 
Their study observed an increase in volume loss with the increase in load and distance. However, volume 
loss decreased with the increase in grit size and was considered to be a dominant factor for the wear 
resistance of the materials. Their study showed that carbon-fi lled composites had greater wear resistance 
than fi berglass-reinforced PTFE matrix.

Venkateswarlu et al. [5] investigated mechanical properties such as hardness, tensile strength, and  
elongation of pure PTFE and different PTFE-composites with varying fi ller concentrations. Their study 
observed an increase in hardness with the optimum fi ller content and beyond this value hardness was 
decreased. On the other hand, tensile strength and elongation of PTFE-composites decreased with the 
increase in fi ller content. Their study found bronze as a promising fi ller material for obtaining higher tensile 
strength and lower elongation.

Wang et al. [6] experimental study revealed that single incorporation of short carbon fi ber and graphite 
signifi cantly reduces friction in the case of composites based on PI and its wear resistance. Song et al. [7] 
investigated the effect of addition of glass fi ber and molybdenum disulphide (MoS2) on wear and friction 
of PTFE-composite with chopped carbon fi ber (20 wt.%) as fi ller. Their study found an increase in friction 
coeffi cient with the sliding speed and its decrease with the load when used steel ring as counter surface. The 
addition of MoS2 to PTFE composite increased its scratch resistance and therefore reduced the wear rate.

Gujrathi et al. [8] experimental studies also observed reduction in the wear rate due to fi ller materials 
addition. Their study observed that the development of a protective layer between the pin and counterface 
assisted in decreasing the wear volume loss. Shen et al. [9] investigated the tribological performance of 
PTFE fi lled SiO2 particles-epoxy composites. Their study observed that adding 10-15% of PTFE yields 
in lowest coeffi cient of friction and wear rate under dry sliding with bearing steel balls as counterface. In 
another study, Shen et al. [10] compared the abrasion resistance of PTFE using Al2O3 particles with sizes in 
the range 5 to 200 μm. Their study revealed that the abrasive size signifi cantly infl uences the tribological 
characteristics of tribo-pairs. 

Sawyer et al. [11] observed the wear resistance of PTFE composite reinforced with 40 nm alumina 
particles increased with fi ller concentration. Kim et al. [12] study found a decrease in friction coeffi cients 
with the normal load and sliding velocity. Wear rates observed as decreasing with the rise in normal load. 
However, initially wear rate increased with the sliding velocity and then decreased. 

Wang et al. [13] investigated the wear properties of textured stainless steel opposed to polymer surfaces. 
EDX analysis performed by them showed different wear behavior. Desale and Pawar [14] studied the wear 
and friction characteristics of solid lubricant PTFE reinforced with carbon, MoS2, glass fi ber, polyether ether 
ketone particles under dry and wet conditions against SS304 stainless steel. They observed the minimum 
wear rate for the PTFE composite fi lled with 15% glass fi ber and 5% MoS2 particles. 
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Artifi cial neural network (ANN) model has been considered as potential and good tool for mathematical 
modelling of complex and nonlinear wear behavior [15]. The ANN approach, inspired by the biological 
nervous system, simulates many complicated real-life nonlinear and complex relationships. Ibrahim et al. 
[15] developed an ANN model to determine wear of PTFE composites. Further, the performance of the 
models was compared with conventional multilinear regression model (MLR). Their study showed that 
the ANN model has higher predictive accuracy. Sensitive analysis showed that the volume fraction of the 
reinforcing fi ller, the sliding distance and the density of the composites tend to be signifi cant parameters.

ANN helps to ensure the accuracy in modelling nonlinear relations of composite material properties. 
And further helps to evaluate the infl uence of many input parameters on material’s performance. A group 
of researchers found that ANNs are highly accurate in modelling the mechanical behavior of composite 
materials [16]. Researchers have put a lot of effort into modeling sliding wear characteristics using ANNs. 
A group of researchers observed that the performance of an ANN model depends on the quantity and type 
of data provided while training. Further, it is reported that it is necessary to determine the signifi cant set of 
parameters to save time and train an ANN model effectively [17]. The ANN modelling assists in understanding 
the process physics that would improve the process performance by facilitating better process control. 

Although suffi cient work has been carried out by the researchers to evaluate the performance of 
reinforced composites, very few have modeled sliding wear characteristics of PTFE composite reinforced 
with carbon fi ber against SS304 stainless steel. With this view, this study develops experimental-based 
mathematical and ANN models to predict the sliding wear characteristics of PTFE composite reinforced 
with carbon fi ber against SS304 stainless steel taking into account the impact of normal load, interface 
temperature, and sliding velocity.

Experimental Details

Carbon-fi lled PTFE has excellent frictional properties, mechanical and wear properties. During manu-
facturing, carbon may be added in the form of powder or fi bre. A hot compression moulding process is used 
to prepare a PTFE pin reinforced with carbon fi bre (35 wt.%). The reinforced PTFE composite specimens 
had diameter and length of 10 mm and 40 mm, respectively.

Cylindrical pins were further machined to have an 
individual length of 31 mm considering the position 
of the pin heater holder in which the test specimens 
(pin) get fi tted. Three sets of SS304 stainless steel 
plates were used as the material for discs having an 
outer diameter of 165 mm and a thickness of 8 mm. 
All plates were hardened to 60 HRC and machined to 
get an almost equal surface roughness of 1.6 μm. 

A pin-on-disk machine was used to perform dry 
sliding experiments (Fig. 1). This machine has a fa-
cility to vary the speed in the range from 200–2000 
rpm and normal load in the range of 20-200 N. The 
machine is equipped with a heater for obtaining the 
effect of interface temperature on wear characteristics 
of sliding surfaces. A thermocouple is used to obtain 
information about the temperature of the pin. This machine also has a facility to carry out wear tests taking 
into account the impact of lubrication.

Cylindrical pins used as test specimens varied in size and had a diameter of 3, 6, 8 and 10 mm. Each 
pin size required a different holder type. This holder was mounted on a rod that has a seesaw arrangement. 
The weights attached at the other end of the rod was transferred to cylindrical pin and hence, plate (disk) 
through steel wire. Friction force and the linear wear (in μm) were measured by sensors that the machine 

Fig. 1. A pin-on-disk machine showing disk 
arrangement
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was equipped with. Proximity sensor that the machine is equipped with helped in measuring the speed of 
the disk (rpm) having least count of 1 rpm with 1 % accuracy. 

In general, in the compression process pressure on the piston ring varied in the range 2 to 25 bar and 
temperature in the range 50–200oC with a sliding velocity of 5 m/s. Based on this, ranges of normal load, 
interface temperature and sliding speed were selected, which are shown in Table 1. Experiments were 
planned systematically to investigate the effect of input parameters on specifi c wear rates with a wide range 
of design space. In total, fi fteen experiments were carried out at a 5-kilometer distance without repeating 
the central run experiment. Sliding velocities were obtained by selecting the track diameter on the disk and 
corresponding rotation of the disk. 

T a b l e  1
Levels of parameters selected to evaluate specifi c wear rate

Parameter Low level Moderate level High level

Normal load (FN) (N) 20 100 180

Interface temperature (T) (oC) 50 100 150

Sliding velocity (v) (m/s) 2 5 8

Track distance: 5 km

Results and Discussion

Dry sliding wear characteristics of PTFE composite (a pin material) against SS304 stainless steel 
plate (a disk material) were performed on a pin-on-disk machine. Experiments were performed as 
per DoE; normal load, interface temperature, and sliding velocity were varied in the ranges as shown in 
Table 1. 

On the pin-on-disk machine, the normal load was applied to the pin by transferring (seesaw arrangement) 
the weights attached at the other end of the rod. The corresponding temperature was set by turning on the 
heater and the temperature attained was measured by a thermocouple. The required sliding speed was 
obtained by selecting the appropriate track diameter on the disk and selecting the corresponding rotation 
speed of the disk. The test was carried out at a 5-kilometer track distance (approx. 14–17 min). A digital 
readout for wear, friction force corresponding to process parameters such as normal load, temperature, and 
disk rotation speed was monitored from the Control panel. The Control panel was attached to a desktop 
computer. Variation in friction force and wear with respect to test time to cover track distance of 5 km was 
also monitored on a desktop computer using Windcom software. 

Experimental matrix with process parameters such as normal load, interface temperature, sliding speed 
and corresponding results is shown in Table 2. Theoretically, the wear rate was calculated by Eq. 1. How-
ever, volume loss was obtained by measuring the weight loss of the pin prior to and following the test. 
Volume loss is calculated by using Eq. 2.

 volume loss
Specific wear rate = ,

load sliding distance
  (1)

where

 mass loss
Volume loss = .

density
  (2)

An experimental-based mathematical model as shown in Eq. 3 was developed to predict wear rate in 
terms of normal load (FN), interface temperature (T), and sliding speed (v). The developed model is also 
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T a b l e  2 
Experimental matrix and results

Expt. 
No.

FN (N) T (oC) v (m/s) Weight (gm) Weight 
loss
(gm)

Volume 
loss

(mm3)

Specifi c wear rate 
(× 10–5) (mm3/Nm)

Before 
test After test

1 50 70 7 5.191 5.185 0.006 2.65 1.06
2 100 100 5 5.223 5.207 0.016 7.75 1.55
3 50 130 7 5.251 5.244 0.007 3.15 1.26
4 150 130 3 5.196 5.168 0.028 13.275 1.77
5 100 50 5 5.134 5.122 0.012 5.9 1.18
6 180 100 5 5.061 5.017 0.044 20.97 2.33
7 150 130 7 5.172 5.130 0.042 19.875 2.65
8 100 100 2 5.211 5.200 0.011 5.2 1.04
9 20 100 5 5.183 5.181 0.002 0.77 0.77
10 150 70 7 5.214 5.181 0.033 15.675 2.09
11 100 100 8 5.252 5.232 0.020 9.4 1.88
12 150 70 3 5.211 5.185 0.026 12.525 1.67
13 100 150 5 5.133 5.114 0.019 9.05 1.81
14 50 130 3 5.183 5.178 0.005 2.35 0.94
15 50 70 3 5.221 5.217 0.004 1.725 0.69

useful to understand the parametric impact on wear. In the equation k, a, b, and c are constants that are 
obtained by developing polynomial regression model based on the experimental data. 

 Specific wear rate ( )    .a b c
s NW k F T v   (3)

A DataFit software was used to obtain the correlation between wear, normal load, temperature, and 
sliding velocity as expressed in Eq. 4. The correlation coeffi cient obtained (R2 value) is 0.9791 showed 
that the developed empirical expression could be effectively used to know wear rate of a PTFE composite 
reinforced with carbon fi ber (35 wt.%) against SS304 stainless steel in the range of parameters selected in 
this study.

 8 0.6307 0.333 0.403Specific wear rate ( ) 9.89 1 .0s NW F T v    (4)

From the exponents of normal load, interface temperature, and speed, it can be seen that specifi c wear 
rate is signifi cantly affected by normal load and after that by sliding speed, and temperature. To have a clear 
understanding of the effect of input parameters on specifi c wear rate 3-D graphs are plotted for specifi c 
wear rate using empirical Eq. (4), varying with normal load, interface temperature, and sliding speed. 
3-D surface curves are plotted by varying the two process parameters at a time, keeping the other parameter 
constant at the mid-value of the ranges of the parameters as depicted in Table 1. 

The 3-D plots refl ecting the variation in the specifi c wear rate are shown in Figs. 2, a–c. Fig. 2, a depicts 
the variation in the wear rate with the normal load and interface temperature considering the sliding veloc-
ity of 5 m/s. Fig. 2, b shows the variation in wear rate with the sliding speed and normal load, and Fig. 12, 
c depicts variation with the interface temperature and sliding speed. The plots are based on varying two 
process parameters while maintaining a constant value of the third parameter (FN = 100N, T = 100oC, and 
v = 5 m/s). This study found an interaction effect of the process parameters on the PTFE composite wear 
rate against SS304 stainless steel.
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It is apparent that the specifi c wear rate increases with the normal load, interface temperature, and 
sliding velocity. However, the increase in specifi c wear rate will become more noticeable at higher process 
parameters. The normal load followed by sliding velocity and interface temperature can be seen as most 
signifi cant parameters affecting the wear rate. This can be also confi rmed by the higher exponent value for 
the normal load followed by for sliding speed and then for interface temperature in Eq. (4). This study fi nds 
that wear is prominently affected by the normal load, especially at higher values of interface temperature 
and sliding speed.

Artifi cial neural network (ANN) is a computational technique that can model relationships between 
input parameters and output responses. A typical MLP architecture which is most commonly used is shown 
in Fig. 3. MLP is characterized by three different layers namely input layer, hidden layer, and output layer, 

which consist of an interconnected group of 
artifi cial neurons. The number of neurons present 
in the input layer and output layer is equal to the 
number of input variables and corresponding 
output values.

To predict output with higher accuracy, 
training of the developed network is essential. 
In the training process of a model, the synaptic 
weights of the network are modifi ed in an orderly 
fashion to attain the desired output. Most used 
training algorithms is the error backpropagation 
algorithm. For a typical ANN algorithm, at the fi rst 
step the weights and thresholds are initialized. 
Then, the output of each neuron is calculated 

Fig. 2. 3-D plots showing specifi c wear rate varying with:
a – Normal load and interface temperature; b – Normal load and sliding speed; c – Interface temperature and sliding 

speed

                                  a                                                                                                     b

c

Fig. 3. Typical ANN architecture
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from the input data and initialized weights which lead to the fi nal output prediction of the network. Then, 
the error at output node is calculated and based on an error the weights are modifi ed. And weights in 
the previous layers are modifi ed by back-propagating errors calculated at output layer nodes [18]. This 
process is repeated for a set of input and output of training data. The training stops when the ANN output is 
suffi ciently close to the expected output for each set.

ANN model is built to obtain the wear considering the input parameters as the normal load, interface 
temperature, and sliding speed using MATLAB Toolbox. The ANN architecture has three layers namely 
input, output, and hidden layers (Fig. 4). The input layer has 3 neurons, the output layer has 1 neuron, 
and there is appropriate number of neurons on the hidden layer. The neurons are selected by checking the 
network accuracy. The number of neurons on the hidden layer can be changed if the network does not 
perform well after training.

Fig. 4. ANN architecture to obtain wear rate

A feed-forward neural network maps a data set of numeric inputs with a set of numeric targets. The 
Neural Fitting app of MATLAB Toolbox helps to select data and create and train a network and evaluate 
its performance using mean square error and regression analysis. A two-layer feed-forward network with 
sigmoid hidden neurons and linear output neurons is selected that fi ts multi-dimensional problems arbitrarily 
well, given consistent data and enough neurons in its hidden layer. The network has been trained with the 
Levenberg-Marquardt backpropagation algorithm.

In a neural network, three kinds of samples are used for the training and validation of test data. In the 
present work, around 70 % of the data is used for training the neural network. The network is adjusted 
according to its error. Around 15 % of the data is used for validation of the results predicted by the trained 
neural network. These validation data sets are used to measure network generalization, and to halt training 
when generalization stops improving. And around 15 % data is used for testing the results predicted by the 
neural network. These data sets do not affect training and so provide an independent estimation of network 
performance during and after training. 

The next important step is to determine network architecture to obtain better accuracy of the predicted 
results. In this study, a better-predicted accuracy of 0.9747 has been observed with eight neurons in the 
hidden layer. Further, the network is to be trained using either the Levenberg-Marquardt algorithm or 
Bayesian Regularization, or Scaled Conjugate Gradient algorithm. However, the researchers have mostly 
used the Levenberg-Marquardt algorithm. This algorithm is comparatively faster than other algorithms. 
However, this algorithm requires more memory. 

Neural network training performance is measured in terms of mean squared error (the average squared 
error between targets and outputs). Lower values are better. Regression (R) values measure the correlation 
between outputs (predicted values) and targets (inputs). Neural network regression graphs with regression 
coeffi cients obtained while training the model, during validation, testing, and for the entire data set are 
shown in Figs. 5, a–d respectively. 

The values of regression coeffi cients close to one for training, validation, testing, and for the entire data 
set shows that the developed neural network model could be reliably used for predicting PTFE composite 
wear rate reinforced with carbon fi bre (35 wt.%) against SS304 stainless steel within the domain of the 
parameters selected in this study. 
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Further, the validation experiments were performed using the process parameters different than that are 
used for developing the models. A comparative of the predicted results with the experimental-based math-
ematical model and artifi cial neural network (ANN) is shown in Table 3. The model accuracy is assessed by 
obtaining % error between the predicted and experimental values of wear rate for different process param-
eters. The % error is obtained using Eq. (5).

 
 Predicted value – Expt value 100

Average error = .
Expt value


  (5)

Table 3 presents data on the specifi c wear rate predicted by the developed models. Predicted results are 
seen in good agreement with the experimental values with average error of 10.16 % for experimental-based 
model and 3.57 % for ANN model. It is apparent that the results predicted by the ANN model are having a 
better agreement with the experimental results as compared to experimental-based model. 

Conclusions

This study attempted modelling sliding wear characteristics of PTFE composite reinforced with carbon 
fi ber (35 % by weight) against SS304 stainless steel. Experiments were carried out on the pin-on-disk at 
different normal loads, interface temperature, and sliding velocities. An experimental-based mathematical 

                                   a                                                                                         b

                                   c                                                                                         d
Fig. 5. Neural network (a) Training; (b) Validation; (c) Test; (d) All data set
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T a b l e  3 

Validation experiments and modeling results

Expt. 
no. FN (N) T (oC) v (m/s)

Specifi c wear rate (x 10-5) (Ws) (mm3/Nm) |% Error|
Expt. 
value

Statistical 
model ANN model Statistical 

model
ANN 

model
1 130 1.72 1.72 1.72 1.72 1.72 5.06 1.72
2 90 4.97 4.97 4.97 4.97 4.97 19.16 4.97
3 40 5.04 5.04 5.04 5.04 5.04 15.33 5.04
4 140 1.29 1.29 1.29 1.29 1.29 7.72 1.29
5 170 3.24 3.24 3.24 3.24 3.24 7.61 3.24
6 70 5.13 5.13 5.13 5.13 5.13 6.10 5.13

Average error 10.16 3.57

model and ANN model were developed to predict specifi c wear rates to understand the parametric effect on 
specifi c wear rate. The followings conclusions could be drawn from the present study:

It has been observed that the wear rate increased with the normal load, interface temperature, and 
sliding velocity. However, the increase was more prominent at higher process parameters. The normal load 
followed by sliding velocity and interface temperature were found as most signifi cant parameters affecting 
the wear rate. This was also confi rmed by the higher exponent value for the normal load followed by for 
sliding speed and then for interface temperature.

The correlation coeffi cient of 0.97 observed for both the developed experimental-based mathematical 
and ANN models shows that the model could be reliably used to obtain wear rate of PTFE composite rein-
forced with carbon fi ber (35% by weight) against SS304 stainless steel. 

The results predicted by the developed models for specifi c wear rate were in good agreement with the 
experimental values with an average error close to 10%. However, the results predicted by the ANN model 
showed better agreement (avg. error of 3.57 %) with the experimental results than statistical-based models 
(avg. error of 10.16 %). 
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