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A B S T R A C T

Introduction. During the metallurgical production of silicon, waste is generated that accumulates in dumps, 
harming the environment. Disposal and recycling of solid waste from silicon production is especially important 
because it contains important chemical compounds (silicon dioxide, silicon carbide, carbon nanotubes) that can be 
used in other industries, which will bring greater economic value. Considering the possibilities for extracting these 
useful components from silicon production waste, it is necessary to bring processing technologies to the stage of 
widespread practical application. Therefore, the development of a special waste processing technology to obtain a 
useful product in the form of a composition of silicon dioxide and silicon carbide remains an urgent problem. The 
purpose of the work is to study the formation of the morphological form of graphite when adding nano-modifi ers 
from silicon production waste. Methods. The work examined specimens of gray cast iron after modifi cation with a 
combined modifi er obtained from silicon production waste. The research methods are mechanical tests for statistical 
tension, analysis of the chemical composition and metallographic studies. Results and Discussion. It is revealed 
that the mechanical properties of gray cast iron increased by 30–50 % after modifi cation with a combined modifi er, 
compared with witness specimens. The morphology of graphite is an important parameter aff ecting the properties 
of cast iron. It is established that during the modifi cation process the morphology of graphite changes from lamellar 
to vermicular. Specimens of gray cast iron with vermicular form of graphite have high strength values compared 
to specimens of gray cast iron with lamellar form of graphite. The presented results confi rm the prospects of the 
developed approach aimed at obtaining new classes of modifi ers and products made of gray cast iron with a high 
complex of mechanical properties.
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Metal Working and Material Science, 2024, vol. 26, no. 1, pp. 194–211. DOI: 10.17212/1994-6309-2024-26.1-194-211. (In Russian).
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Introduction

A large amount of waste is generated during the operation of steel plants around the world. Typically, 
this solid waste is partially recycled, but a signifi cant amount remains, causing damage to the environment. 
In all technological processes for the production of metallic silicon, material losses of varying degrees and 
quality occur. In Russia, at silicon production plants, a lot of unprocessed metallurgical slag remains in 
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the dumps [1, 2]. Storage of this solid waste requires many square kilometers of land. Waste is collected 
in the form of wet or dry powders [1–7]. It is estimated [1, 2, 6, 7] that more than 100,000 tons of waste 
are generated annually during the production of metallic silicon [7]. Despite signifi cant eff orts to reduce 
its harmful eff ects on the environment, there is no way to prevent contamination of soil and groundwater. 
Currently, work is being carried out in the Russian Federation on the use of industrial waste as modifying 
additives in various industries: construction [4–6], metallurgy [1, 2, 7].

Modifi cation is one of the most important metallurgical treatments applied to molten iron immediately 
before casting to promote solidifi cation without excessive eutectic undercooling, which promotes the 
formation of carbides, usually with undesirable graphite morphology. Gray iron (lamellar graphite) continues 
to be the most produced metal material in the global foundry industry, although its rate has slowed due to its 
replacement by higher-performing malleable irons or lighter-weight aluminum-based alloys.

It is well known [8–21] that the crystallization of graphite is signifi cantly infl uenced by the presence of 
molten impurities in the melt in which it grows, even when these minor elements are present in quantities of 
less than 0.1 %. It can have a positive eff ect, promoting nucleation and spheroidization, or a negative eff ect, 
causing graphite degeneration. The main source of these elements is charge materials such as scrap steel, 
pig iron and pig iron return. A three-stage model of the nucleation of lamellar graphite in gray cast iron was 
proposed in 2,000 with the formation of oxide-sulfi de graphite [8–14]. A large series of research programs 
have defi ned the following model [8–21]: 

(1) Small oxide regions (0.1–3 μm, typically < 2 μm) are formed in the melt; 
(2) Complex compounds (Mn,X)S (from 1 to 10 μm, usually < 5 μm) nucleate on these microinclusions, 

where X = Ca, Ba, Sr, Zr, Mg, P, Ti, La, Ce, etc.; 
(3) Graphite nucleates on the sides of (Mn,X)S compounds due to the low crystallographic mismatch of 

graphite [8, 9].
The role of complex sulfi des (Mn,X)S in the formation of graphite in gray cast irons is confi rmed by 

other representative research works [10–15]. Recently [16, 17] it was discovered that oxygen is mainly 
present in the fi rst microcompound, which is visible as the core of the (Mn,X)S particle, and, in any case, 
also at the sulfi de-graphite interface, formed into a thin (nano-sized) layer and including O, Si, Al, Ca, Ba, 
Sr, La and Mg. The presence of this oxide-based layer is hypothesized to increase the ability of (Mn,X)
S compounds to nucleate graphite due to their better crystallographic compatibility: this is illustrated by 
the use of a hexagonal system compared to a cubic system for sulfi de and the low mismatch found for the 
face (0001) graphite. The smaller the mismatch between two substances (δ), the stronger the nucleation 
potential between it: the highest nucleation capacity is achieved at δ < 6 % (LaS, CeS, SrMnS), the average 
nucleation capacity is achieved at δ = 6 % to 12 % (BaS , CaS), and weak nucleation ability is detected at 
δ > 12 % (MnS, MgS) [18, 19]. The results of research on the morphological characteristics of graphite lead 
to adjustments to national standards [22–25].

The works [1, 2, 7] show the possibility of using silicon production waste as modifi ers in the production 
of cast iron. Two modifi ers were developed [7], obtained after fl otation processing of waste in the form of 
silicon dioxide and nanotubes [1, 7]. The use of modifi ers obtained from silicon production waste not only 
improves the mechanical properties of gray cast iron, but also aff ects the morphology of graphite [26–34]. 
The morphology of graphite is a very important parameter aff ecting the properties of cast iron. The room 
temperature morphology of graphite in cast Fe-C-Si alloys is primarily the result of nucleation from a liquid 
melt and growth of graphite crystals followed by diff usive growth of carbon in the solid state. The chemical 
complexity of iron melts and the temporary nature of nucleation and local segregation caused by the 
chemical composition of the alloy, melt processing and casting conditions are the main determining factors. 
The interaction between these variables can result in a wide variety of graphite forms, including lamellar/
fl ake (LG), compacted/vermicular (CG), spheroidal/nodular (SG), and other graphite forms (TG) [9, 10, 14, 
15, 26–9], as well as some degenerate morphologies such as pointed, blasted or massive graphite (CHG). 
Although nodular cast iron was discovered in the late 1930s [8–12], the mechanism, by which graphite 
changes its shape, remains unclear [8–21, 26–30]. Compacted graphite (CG) iron is a new engineering 
material containing graphite, worm-shaped (vermicular) with rounded edges in a (ferrite-pearlite) matrix. 
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In foreign literature the names compacted, vermicular, worm-shaped [22, 23, 25] can be found. In the 
domestic literature the term vermicular is used [24]. The intermediate graphite (CG) morphology provided 
an advantageous combination of the mechanical properties of ductile iron and the physical properties of 
gray cast iron.

The purpose of this work is to identify the formation of the morphological form of graphite with the 
introduction of a combined modifi er from silicon production waste. The objectives of the work are: 

1) to conduct research to assess the modifying eff ect of a combined modifi er obtained from silicon 
production waste in the smelting of gray cast iron;

2) to determine the eff ect of the combined modifi er on the nucleation of vermicular graphite;
3) to analyze the eff ects of compression/expansion during the crystallization of cast iron when using a 

combined modifi er.

Experimental technique

Experimental cast iron (type SCh15) was smelted in an electric induction furnace (15 kg; 8,000 Hz) 
using cast iron scrap, FeSi and carbonaceous material. The melt, heated to 1,500 °C and held in the oven for 
5 minutes, was released into a pouring ladle at a temperature of 1,480 °C and poured into a sand mold made 
of furan resin at a temperature of 1470 °C. Cylindrical rods were produced (30 mm in diameter and 100 mm 
in height). A combined modifi er based on silicon dioxide and silicon carbide was added to the bottom of the 
mold cavity (additive from 0.5 to 1.5 wt. %, grain size less than 1.0 mm). Research included: determination 
of the chemical composition of cast iron; determination of specimens’ hardness using the Brinell method; 
tensile testing of specimens; study of the macro- and microstructure of gray cast iron. The combined modifi er 
was obtained from cyclone dust waste by fl otation treatment [1, 7, 32, 33]. The appearance of the modifi er 
is shown in fi gure 1, and the composition of the crystalline phase in Table 1 and fi gure 2. Compacting 
the modifi er was carried out from the resulting mechanical mixtures either by tableting using a press, or 
a product was obtained manually globulated using paraffi  n. When analyzing the convex shape factor, the 
diff erence between the real and convex perimeter of the graphite particles is fi rst determined and then the 
resulting value is divided by the ratio of the square root of the convex perimeter to the real perimeter of 
the measured particle. The roundness shape factor is commonly used to defi ne the diff erent morphologies 
of graphite in cast iron, from fl ake to vermicular to nodular graphite, including various subclasses for each 
type of graphite. The graphite roundness shape factor (RSF) is considered (according to the international 
standard ISO 945-4-2019) to be a characteristic of the representative morphology of graphite in cast irons. 
The international standard ISO 16112:2017 “Compacted graphite cast irons – Classifi cation” [25] defi nes 
some of the graphite morphologies that may be present in this type of cast iron. In this RSF standard, 

                                   a                                                                                              b
Fig. 1. The appearance of the combined modifi er: 

formed out of silicon production waste (a); electronic photography of the structure (b)
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T a b l e  1

The composition of the crystal phase of the combined modifi er 
according to XRD results

No. Phase Content (%)

1 SiO2 (Quartz) 50

2 SiC (Moissanite) 35

3 SiO2 (Cristobalite) 10

4 C (Graphite) 5

Fig. 2. Diff raction pattern of the combined modifi er

nodular graphite (ISO Form VI) was defi ned using RSF = 0.625–1.0, with intermediate forms of graphite 
(ISO Forms IV and V) with RSF = 0.525–0.625 and vermicular graphite (ISO Form III) with RSF < 0.525. 
In our case, the graphite roundness shape factor (RSF) was in the range of 0.425–0.519.

Results and discussion

The chemical composition of specimens of gray cast iron and with modifi cation is presented in Table 2. 
It can be seen that the use of the modifi er does not signifi cantly change the chemical composition of gray 
cast iron, with the exception of a slight increase in silicon by 0.1 %.

It is known that for gray cast iron the main indicators of mechanical properties are the minimum value 
of tensile strength and hardness. Table 3 presents the results of mechanical tests of witness cast iron and 
specimens after modifi cation. It can be seen that with the same chemical composition, the use of a modifi er 
increases the mechanical properties of the casting.

The study of the macro- and microstructure of gray cast iron was carried out in accordance with 
GOST 3443-87 using optical and electron microscopy, which made it possible to identify the peculiarities 
of the infl uence of modifi ers. Figs. 3, 4 present the results of optical and electron microscopy. Typically, 
the eutectic solidifi cation unit is represented by austenite and plate-shaped graphite (fi gure 3). In all cases, 
a predominantly lamellar structure of Gf1 type graphite is observed according to GOST 3443-87. Foundry 
practices can infl uence the nucleation and growth of graphite fl akes such that size and type improve 
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T a b l e  2

Chemical composition of cast iron of experimental smelters No. 1 and 2 (wt. %)

Element C Si Mn P S Cr Ni
Smelting without modifi er 3.55 2.10 0.6 0.086 0.052 0.05 0.06

Smelting with modifi er 3.49 2.51 0.5 0.098 0.055 0.01 0.06
Cast iron grade SCh15 (GOST 1412-85) 3.5–3.7 2.0–2.4 0.5–0.8 ≤0.2 ≤0.15 – –

T a b l e  3

Test results of a combined modifi er from silicon production waste

Specimen Modifi er consumption (wt. %) Hardness, HB σu (MPa) Compliance 
with cast iron grade

исходный – 195; 201; 193 139; 143; 147 SCh1510, SCH1515
No. 1 0.5 196; 200; 198 155; 151; 149 SCH1510, SCH1515
No. 2 1.0 205; 208; 209 165; 174; 177 SCH1520
No. 3 1.5 255; 260; 258 305; 310; 312 SCH1530

                                      a                                                                                             b
Fig. 3. Lamellar rectilinear form of graphite on the surface of unmodifi ed cast iron specimens: 

optical (a) and electron (b) microscopy

                                    a                                                                                                 b
Fig. 4. The vermicular graphite shape of the surface of cast iron specimens after modifi cation: 

optical (a) and electronic (b) microscopy
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mechanical properties. The amount and size of graphite, morphology and distribution of graphite fl akes are 
critical in determining the mechanical behavior [26–34]. Lamellar graphite of the Gf1 type in our studies 
has a random orientation. As shown in fi gure 2, b, the morphology of vermicular graphite type Gf5 was 
observed using optical and electron microscopy.

Figure 4 shows a large amount of vermicular graphite with uneven distribution. The ends of vermicular 
graphite are relatively smooth, round and blunt in shape, while the outer edge has a wavy, uneven shape. It 
is obvious that the graphite structures are thin and dispersed. Vermicular graphite makes up approximately 
50 % of the volume, and several other graphite phases can be seen throughout the fi eld of view. Vermicular 
graphite inside the eutectic cluster (fi gure 4, b) is a continuous structure with a hemispherical end. The ends 
of vermicular graphite between the eutectic clusters are not nested into each other and represent full-fl edged 
and independent particles of the eutectic cluster.

Figure 4, b shows metallographic photographs of the core of a gray cast iron casting. The graphite 
morphology is fi ne vermicular graphite about 100–200 μm in length and only a small amount of spherical 
graphite. According to the requirements of regulatory documents, it is necessary to calculate each graphite 
morphology over the cross section of the specimen. The percentage of vermicular graphite on the surface 
and core of the casting is 93 % and 51 %, respectively. The matrix structure of the casting is pearlitic; a 
small amount of ferrite precipitates around the graphite. It was found that specially shaped graphite existed 
in the matrix in addition to vermicular graphite and spherical graphite, as shown in fi gure 4, b. This type 
of graphite morphology is presented in the form of spherical graphite with a small tail, which was called 
tadpole graphite (distorted graphite) in [18]. Most of the distorted graphite head has an irregular spherical 
shape, with a diameter of about 20–50 μm, and a tail length of about 30–120 μm. Interestingly, the graphite 
tail in some areas is separated from the parent body of spherical graphite. The morphology of distorted 
graphite is between spheroidal graphite and vermicular graphite, which is not yet fully developed.

When analyzing the results (Table 2, 3), it is clear that the combined modifi er demonstrates good 
modifying properties. The modifi ed specimens showed higher mechanical properties compared to the 
witness sample. Previously, in [7, 32, 33], we compared modifi ers consisting of silicon dioxide with the 
standard modifi er FS75, which showed an increase in the positive eff ect on the structure and properties. 
From the theory and practice of foundry production it is known that the eff ectiveness of modifi cation in the 
smelting of gray cast iron is checked when processing cast iron with a low carbon equivalent. This study 
shows that the combined modifi er has a positive eff ect on the mechanical properties of gray cast iron.

On specimens without modifi cation (fi gure 3), we see that graphite has a morphological shape in the 
form of plates. Vermicular graphite (fi gure 4) is a transitional form between fl ake graphite and spherical 
graphite [8–19], and its roundness factor (RSF) ranges from 0.3 to 0.6. The roundness coeffi  cient was 
calculated according to the formulas [23, 25]. The morphology of graphite plays an important role in the 
mechanical properties of gray cast irons. According to the theory of cast iron crystallization, the fi nal shape 
of graphite is uncontrollable at the nucleation stage and depends on the growth stage. The diff erences in 
graphite morphology are due to diff erent growth rates in all directions. The direction of growth depends 
mainly on the chemical composition [17–21]. The diff erences in the growth behavior of lamellar, spherical 
and vermicular graphite depend mainly on the exclusion of selective adsorption of surface-active atoms on 
the graphite surface [18]. During eutectic cluster growth, low melting point and low content compounds 
such as sulfur and phosphorus are typically thrown to the grain boundaries, and austenite does not surround 
the vermicular graphite during growth. As graphite solidifi es, it is able to change the direction of its growth 
at the solid-liquid interface.

During the solidifi cation process of cast iron, the mode of graphite growth and the fi nal morphology 
depend on the thermodynamic conditions and chemical composition of the molten cast iron. According 
to works [8–19, 26–39], the mechanism of formation of graphite morphology in cast iron is as follows. 
When the molten iron is suffi  ciently pure and free of surfactants (O, S or other impurities), the main growth 
direction of graphite is the normal of the basal plane (0001) (c direction), and the graphite will preferentially 
develop through spiral growth into a spherical shape, since it can occur with minimal activation energy 
[20, 21]. However, molten iron inevitably contains surfactants such as S and O, which have been found 
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[8–13] to be absorbed at graphite-iron interfaces and are likely to increase the undercooling required for 
growth, especially at the hexagonal facet plane. graphite lattice shapes. As a result, the direction of graphite 
growth changes to normal to the plane of the face (a-direction) and lamellar graphite is formed [1, 15-18]. 
Therefore, when producing compacted graphite cast iron, elements (Mg, La, Ce, etc.) are usually added to 
consume the surfactants around the graphite. As a result, graphite grows alternately in the a direction and 
then in the c direction, forming vermicular graphite [8–11]. In our case, compounds of silicon dioxide and 
silicon carbide perform the same roles, which leads to a change in the morphology of graphite in gray cast 
iron.

It is important to note that for decades, graphite shapes in cast iron have been assessed by comparing 
microscopic images to stylized reference images, with a preferred magnifi cation of 100× [23–25]. Two dif-
ferent approaches to graphite classifi cation have been standardized by ISO and ASTM (see fi gure 5) and the 
domestic standard [24], which diff er in the number, name and examples of graphite particles depicted (fi g-
ure 5). However, when analyzing foreign and domestic standards, all evaluation approaches subjectively 
change the shape of graphite from lamellar to nodular with some more or less degenerate shapes in between.

In fi gure 5, we took the requirements for graphite morphology from each standard and combined them 
in one drawing. The domestic standard [24] contains more than 13 types of graphite morphology and is 
designated by the letters Г with the corresponding index.

For example [22–25], the EN ISO 945-1 defi ned VI ISO and V ISO shapes can be considered similar 
to ASTM  I ASTM and II ASTM shapes, although II ASTM are convex particles whereas V ISO shape ap-
pears more star-shaped. Both forms contain the desired round particles as well as less round particles that 
are not likely to aff ect the mechanical properties. IV ISO and III ASTM forms contain particles that are 
common in ductile iron, but the forms presented are diff erent. IV ISO and III ASTM forms are compacted 
particles that are desirable in ductile iron and may also be found in nodular cast iron. II ISO form is a styl-
ized representation of degenerated graphite particles known as pointed or intercellular graphite, which is 
mainly formed from trace elements. Unlike its stylistic image, this form does not appear independently, but 

Fig. 5. Various standard approaches to graphite classifi cation: 
upper row: graphite types in accordance with EN ISO 945-1, middle row: graphite types in accordance with 

ASTM A247 – 16a. 9, lower row: graphite types in accordance with GOST 3443-77
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only in combination with spherical or fl ake graphite. In contrast, V ASTM form is an actual microscopic 
image of degenerated graphite, which has a very diff erent appearance II ISO from. Although VI ASTM 
form shows an example of blasted graphite, EN ISO 945-1 does not provide reference pictures for these 
types of graphite degeneration. Both ASTM A247 and EN ISO 945-1 represent fl ake graphite (I ISO and VII 
ASTM) in the same way. In addition to stylistic illustrations, EN ISO 945-1 also contains actual microscopic 
examples of I ISO Forms and III–VI ISO. In GOST 3443-87, fl ake graphite is represented by Гф1–Гф4, 
vermicular Гф5, Гф6. According to the requirements of GOST 3443-77, during the analysis process, in the 
case of a pronounced mixed morphology of graphite, it is necessary to carry out a manual analysis of each 
structural component (lamellar, vermicular, spherical), which is associated with high labor intensity of the 
analysis and subjective interpretation of the results.

In GOST 3443-87, lamellar graphite is represented by Гф1–Гф4, vermicular Гф5, Гф6. According to 
the requirements of GOST 3443-87, during the analysis process, in the case of a pronounced mixed mor-
phology of graphite, it is necessary to carry out a manual analysis of each structural component (lamellar, 
vermicular, spherical), which is associated with high labor intensity of the analysis and subjective interpre-
tation of the results.

In [35–38], a new approach to the instrumental assessment of the morphological features of graphite 
during crystallization is presented based on thermal analysis combined with an assessment of expansion 
and contraction during cooling. A mechanical expansion/contraction system was used to evaluate the initial 
expansion of magnesium-treated cast irons, which was identifi ed as the main factor infl uencing the shrink-
age sensitivity of cast irons with diff erent graphite morphologies [36]. It was found (fi gure 6) [39] that the 
formation of graphite led to an important event at the onset of solidifi cation, namely initial expansion in all 
cast irons containing graphite, due to the force generated by the formation of diff erent graphite morpholo-

Fig. 6. The cooling curve of pre-eutectic cast iron with characteristic 
temperatures showing the solidifi cation intervals of the primary 
and eutectic phases and the correlation with the formation of shrinkage 

defects [39]
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gies applied to the mold wall [35, 36]. Liquid iron begins to cool and shrink immediately after pouring. The 
density of the liquid increases and the specifi c volume decreases, which leads to shrinkage of the liquid. 
This shrinkage can be compensated for by risers. According to [39], in iron, solidifi cation then begins at the 
liquidus temperature (TL) with the formation of dendrites that grow inward from the walls of the cup until 
eutectic solidifi cation begins (zone 1 in fi gure 6). Dendritic shrinkage can continue even after solidifi cation 
has begun (TE_start), since the amount of eutectic formed is initially small (zone 2). As long as the sup-
ply channel is open and the permeability of the loose dendritic region is suffi  ciently high, the shrinkage is 
compensated by the fl ow from the risers. After reaching maximum supercooling (TE_low), the rapid forma-
tion of eutectic shifts the emphasis of solidifi cation from the predominance of dendritic shrinkage (zones 1 
and 2) to the predominance of graphitic expansion (zones 3 and 4).

The expansion of graphite may or may not continue until the end of solidifi cation [39]. In zone 3, 
suffi  cient expansion of the graphite compensates for the compression of the liquid and dendrites. In zone 
4, when the amount of eutectic formed and therefore graphite decreases, there is a risk of micro-shrinkage 
(microporosity) as the expansion of graphite may become insuffi  cient to compensate for the shrinkage. 
In principle, both LG and SG cast irons are close to eutectic in composition and should exhibit expansion 
during solidifi cation, hence should not be prone to cavity formation or shrinkage of porosity. Although this 
is true for gray cast iron, conventionally produced nodular iron is subject to shrinkage porosity.

For nodular cast iron, the melting zone is much larger and its permeability is much less than that of fl ake 
graphite cast iron. This, according to [39], limits the fl ow from the riser and reduces the cooling rate. Due 
to the limited growth of graphite at the end of solidifi cation, 
austenite shrinkage predominates, which causes a decrease 
in the specifi c volume and leads to uncompensated shrinkage 
in the last solidifi cation zone. This eff ect and the signifi cant 
release of gas from the solidifying liquid lead to the formation 
of porosity. Experimental linear displacement analysis 
(LDA) and thermal analysis (TA) devices have been used by 
a number of researchers [7–21] to measure the amplitude 
of the expansion/contraction eff ects occurring during the 
solidifi cation of cast iron. An extensive literature review on 
various methods was provided in [35].

A setup for thermal analysis was previously presented 
by us in [7]. In addition to this, a stand was developed that 
includes two parallel molds for pouring specimens (mold 
sizes 200 mm and 30 mm), a cooling module (0.72 cm) and 
a deformation recording module. The high-speed interface 
simultaneously records temperature and linear displacement 
data. The results of preliminary experiments are shown in 
fi gure 7. The morphology of graphite has a marked infl uence 
on the initial expansion value: it increases from fl ake graphite 
(LG) through vermicular graphite (CG) to nodular graphite 
(NG), respectively. In the same way, sensitivity to shrinkage 
increases, and the connection between two parameters 
is obvious: initial expansion - level of shrinkage. These experiments also demonstrated the importance 
of accurately estimating contraction/expansion events and their relationship to cooling curve events, 
respectively.

Several key parameters have been identifi ed that correlate with the specifi c behavior of our inoculants 
as it relates to graphite release and shrinkage sensitivity of gray cast iron. These were: depth of eutectic 
supercooling, recalescence and maximum recalescence rate, temperature of the end of solidifi cation, 
maximum initial expansion and the total integral from the fi rst derivative of the compression curve to the 
end of pre-pearlite compression. Subcooling at the end of solidifi cation relative to the metastable (carbide) 

Fig. 7. The results of the study of the infl uence 
of graphite morphology on the initial expan-
sion (compression curve) and the tendency to 
shrinkage (Гф1 – lamellar, Гф5 – vermicular)
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equilibrium temperature and expansion within the solidifi cation sequence appear to have a strong infl uence 
[39] on the susceptibility to macro- and micro-shrinkage in ductile iron castings.

The work [34] states that molten cast iron usually contains double oxide fi lms (bifi lms). These silicate 
oxide fi lms provide a substrate on which oxysulfi des and graphite nuclei form. The presence of these double 
silicate fi lms explains the diversity of graphite morphology.

Lamellar graphite grows along the fi lms, and spherical graphite grows when these fi lms are destroyed, 
for example, with the addition of magnesium. It was shown in [10–17, 35–39] that the appearance of the 
vermicular form of graphite was associated not only with the interaction of silicon with carbon monoxide, 
but also due to the interaction, in this case, of silicon monoxide with a graphite nucleus. As the temperature 
of the metal melt decreases, the surface activity of SiO decreases [10–12], its mobility decreases, and at the 
site of formation it dissolves in graphite, changing its morphology to vermicular [35–39].

In conclusion, we note that the components of the combined modifi er (silicon oxides and carbides) do 
not dissolve immediately when added to the melt; dissolution occurs slowly, which gives a preliminary 
inoculation eff ect that slowly fades and remains eff ective for several hours [8, 12–15, 26 , 28, 34–42]. At the 
same time, the behavior of SiC before modifi cation in gray cast iron melts has not been suffi  ciently studied, 
but it is stated [31, 41, 42] that during the dissolution of SiC in the melt, graphite clusters form around 
SiC particles as a result of local supersaturation of the melt with Si and C. These graphite clusters, which 
are thermodynamically metastable over a period of time, play an important role in the pre-modifi cation 
eff ect of SiC in the melt and promote the formation of graphite and eutectic nucleation. Dissolution of the 
FeSi compound can also result in the formation of graphite clusters, but due to the higher dissolution rate 
these clusters remain stable only for short periods of time. Consequently, when SiC is dissolved, more 
graphite clusters are formed, which last longer than when FeSi is dissolved. The formation of many graphite 
clusters around the SiC particles reduces the carbon content in the rest of the melt, and therefore austenite 
nucleation occurs at higher temperatures. The use of modifi ers from silicon production waste to achieve 
the technological properties of gray cast iron together with other advanced technologies in mechanical 
engineering and metal processing [43–50] will make it possible to comprehensively solve high-tech, 
knowledge-intensive problems.

Conclusions

1. Studies conducted to assess the modifying eff ect of a combined modifi er obtained from silicon 
production waste in the smelting of gray cast iron show its high effi  ciency compared to classical modifi ers. 
It is established that the addition of a combined modifi er based on silicon oxide and carbide instead of the 
standard FeSi modifi er led to an increase in tensile strength and hardness by 35–50%, due to a change in the 
morphology of graphite from lamellar to vermicular.

2. It is shown that the proposed composition of the combined modifi er induces the nucleation of a large 
amount of vermicular graphite, and also increases the number of eutectic cells and reduced the tendency to 
form white cast iron.

3. It is shown that the analysis of compression/expansion eff ects during the crystallization process 
correlates well with the change in solidifi cation parameters in accordance with the characteristics of the 
molten cast iron, which depend on the melting procedure and the modifi ers used, the rigidity of the mold 
and thermal behavior (heat transfer parameters).
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