Том 25 № 4 2023 1 СОДЕРЖАНИЕ ОБРАБОТКА МЕТАЛЛОВ СОУЧРЕДИТЕЛИ ФГБОУ ВО «Новосибирский государственный технический университет» ООО НПКФ «Машсервисприбор» ГЛАВНЫЙ РЕДАКТОР Батаев Анатолий Андреевич – профессор, доктор технических наук, ректор НГТУ ЗАМЕСТИТЕЛИ ГЛАВНОГО РЕДАКТОРА Иванцивский Владимир Владимирович – доцент, доктор технических наук Скиба Вадим Юрьевич – доцент, кандидат технических наук Ложкина Елена Алексеевна – редактор перевода текста на английский язык, кандидат технических наук Перепечатка материалов из журнала «Обработка металлов» возможна при обязательном письменном согласовании с редакцией журнала; ссылка на журнал при перепечатке обязательна. За содержание рекламных материалов ответственность несет рекламодатель. 16+ РЕДАКЦИОННЫЙ СОВЕТ Председатель совета Пустовой Николай Васильевич – доктор технических наук, профессор, Заслуженный деятель науки РФ, член Национального комитета по теоретической и прикладной механике, президент НГТУ, г. Новосибирск (Российская Федерация) Члены совета Федеративная Республика Бразилия: Альберто Морейра Хорхе, профессор, доктор технических наук, Федеральный университет, г. Сан Карлос Федеративная Республика Германия: Монико Грайф, профессор, доктор технических наук, Высшая школа Рейн-Майн, Университет прикладных наук, г. Рюссельсхайм, Томас Хассел, доктор технических наук, Ганноверский университет Вильгельма Лейбница, г. Гарбсен, Флориан Нюрнбергер, доктор технических наук, Ганноверский университет Вильгельма Лейбница, г. Гарбсен Испания: Чувилин А.Л., кандидат физико-математических наук, профессор, научный руководитель группы электронной микроскопии «CIC nanoGUNE», г. Сан-Себастьян Республика Беларусь: Пантелеенко Ф.И., доктор технических наук, профессор, член-корреспондент НАН Беларуси, Заслуженный деятель науки Республики Беларусь, Белорусский национальный технический университет, г. Минск Украина: Ковалевский С.В., доктор технических наук, профессор, проректор по научно-педагогической работе Донбасской государственной машиностроительной академии, г. Краматорск Российская Федерация: Атапин В.Г., доктор техн. наук, профессор, НГТУ, г. Новосибирск, Балков В.П., зам. ген. директора АО «ВНИИинструмент», канд. техн. наук, г. Москва, Батаев В.А., доктор техн. наук, профессор, НГТУ, г. Новосибирск, Буров В.Г., доктор техн. наук, профессор, НГТУ, г. Новосибирск, Коротков А.Н., доктор техн. наук, профессор, академик РАЕ, КузГТУ, г. Кемерово, Лобанов Д.В., доктор техн. наук, доцент, ЧГУ, г. Чебоксары, Макаров А.В., доктор техн. наук, член-корреспондент РАН, ИФМ УрО РАН, г. Екатеринбург, Овчаренко А.Г., доктор техн. наук, профессор, БТИ АлтГТУ, г. Бийск, Сараев Ю.Н., доктор техн. наук, профессор, ИФПМ СО РАН, г. Томск, Янюшкин А.С., доктор техн. наук, профессор, ЧГУ, г. Чебоксары Журнал входит в «Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук». Полный текст журнала «Обработка металлов (технология • оборудование • инструменты)» теперь можно найти в базах данных компании EBSCO Publishing на платформе EBSCOhost. EBSCO Publishing является ведущим мировым агрегатором научных и популярных изданий, а также электронных и аудиокниг. ИЗДАЕТСЯ С 1999 г. Периодичность – 4 номера в год ИЗДАТЕЛЬ ФГБОУ ВО «Новосибирский государственный технический университет» Журнал включен в Реферативный журнал и Базы данных ВИНИТИ. Сведения о журнале ежегодно публикуются в международной справочной системе по периодическим и продолжающимся изданиям «Ulrich’s Periodicals Directory» Журнал награжден в 2005 г. Большой Золотой Медалью Сибирской Ярмарки за освещение новых технологий, инструмента, оборудования для обработки металлов Журнал зарегистрирован 01.03.2021 г. Федеральной службой по надзору за соблюдением законодательства в сфере массовых коммуникаций и охране культурного наследия. Свидетельство о регистрации ПИ № ФС77-80400 Индекс: 70590 по каталогу OOO «УП УРАЛ-ПРЕСС» Адрес редакции и издателя: 630073, г. Новосибирск, пр. К. Маркса, 20, Новосибирский государственный технический университет (НГТУ), корп. 5. Тел. +7 (383) 346-17-75 Сайт журнала http://journals.nstu.ru/obrabotka_metallov E-mail: metal_working@mail.ru; metal_working@corp.nstu.ru Цена свободная Журнал «Обработка металлов (технология • оборудование • инструменты)» индексируется в крупнейших в мире реферативнобиблиографическихи наукометрических базах данных Web of Science и Scopus.
ОБРАБОТКА МЕТАЛЛОВ Том 25 № 4 2023 2 СОДЕРЖАНИЕ СОДЕРЖАНИЕ ТЕХНОЛОГИЯ Акинцева А.В., Переверзев П.П. Моделирование взаимосвязи силы резания с глубиной резания и объемами снимаемого металла единичными зернами при плоском шлифовании.................................................................................................................... 6 Шарма Ш.С., Йоши А., Раджпут Й.С. Систематический обзор технологий производства металлической пены...................... 22 Карлина Ю.И., Кононенко Р.В., Иванцивский В.В., Попов М.А., Дерюгин Ф.Ф., Бянкин В.Е. Обзор современных требований к сварке трубных высокопрочных низколегированных сталей................................................................................................. 36 Старцев Е.А., Бахматов П.В. Влияние режимов дуговой автоматической сварки на геометрические параметры шва стыковых соединений из низкоуглеродистой стали, выполненных с применением экспериментального флюса.............................. 61 Мартюшев Н.В., Козлов В.Н., Ци М., Багинский А.Г., Хань Ц., Бовкун А.С. Фрезерование заготовок из мартенситной стали 40Х13, полученных с помощью аддитивных технологий.......................................................................................................... 74 Логинов Ю.Н., Замараева Ю.В. Оценка схемы многоканального углового прессования прутков и возможности ее применения на практике................................................................................................................................................................................. 90 ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ Раджпут Й.С., Шарма А.К., Мишра В.Н., Саксена К., Дипак Д., Шарма Ш.С. Влияние геометрии наконечника сварочного инструмента на характеристики растяжения соединений сплава АА8011, полученных сваркой трением с перемешиванием.... 105 Чинчаникар С., Гейдж М.Г. Моделирование рабочих характеристик и мультикритериальная оптимизация при токарной обработке нержавеющей стали AISI 304 (12Х18Н10Т) резцами с износостойким покрытием и с износостойким покрытием, подвергнутым микропескоструйной обработке.................................................................................................................................... 117 Гуле Г.С., Санап С., Чинчаникар С. Точение стали AISI 52100 с наложением ультразвуковых колебаний: сравнительная оценка и моделирование с использованием анализа размерностей.................................................................................................... 136 Пивкин П.М., Ершов А.А., Миронов Н.Е., Надыкто А.Б. Влияние формы тороидальной задней поверхности на углы режущего клина и механические напряжения вдоль режущей кромки сверла.................................................................................. 151 МАТЕРИАЛОВЕДЕНИЕ Соколов Р.А., Муратов К.Р., Венедиктов А.Н., Мамадалиев Р.А. Влияние внутренних напряжений на интенсивность коррозионных процессов конструкционной стали......................................................................................................................... 167 Клименов В.А., Колубаев Е.А., Хань Ц., Чумаевский А.В., Двилис Э.С., Стрелкова И.Л., Дробяз Е.А., Яременко О.Б., Куранов А.Е. Модуль упругости и твердость титанового сплава, сформировавшегося в условиях электронного лучевого сплавления при 3D-печати проволокой................................................................................................................................................. 180 Воронцов А.В., Филиппов А.В., Шамарин Н.Н., Москвичев Е.Н., Новицкая О.С., Княжев Е.О., Денисова Ю.А., Леонов А.А., Денисов В.В. In situ анализ кристаллической решетки нитридных однокомпонентных и многослойных покрытий ZrN/CrN в процессе термоциклирования............................................................................................................................................... 202 Рубцов В.Е., Панфилов А.О., Княжев Е.О., Николаева А.В., Черемнов А.М., Гусарова А.В., Белобородов В.А., Чумаевский А.В., Гриненко А.В., Колубаев Е.А. Влияние высокоэнергетического воздействия при плазменной резке на структуру и свойства поверхностных слоёв алюминиевых и титановых сплавов............................................................................................... 216 Бобылёв Э.Э., Стороженко И.Д., Маторин А.А., Марченко В.Д. Особенности формирования Ni-Cr покрытий, полученных диффузионным легированием из среды легкоплавких жидкометаллических растворов.................................................................. 232 Бурков А.А., Коневцов Л.А., Дворник М.И., Николенко С.В., Кулик М.А. Формирование и исследование свойств покрытий из металлического стекла FeWCrMoBC на стали 35............................................................................................................ 244 Шарма Ш.С., Хатри Р., Йоши А. Синергетический подход к разработке легкого пористого металлического пеноматериала на основе алюминия с использованием литейно-металлургического метода.................................................................................... 255 Строкач Е.А., Кожевников Г.Д., Пожидаев А.А., Добровольский С.В. Моделирование эрозионного износа титанового сплава высокоскоростным потоком частиц........................................................................................................................................... 268 МАТЕРИАЛЫ РЕДАКЦИИ 284 МАТЕРИАЛЫ СОУЧЕРЕДИТЕЛЕЙ 295 Корректор Е.Е. Татарникова Художник-дизайнер А.В. Ладыжская Компьютерная верстка Н.В. Гаврилова Налоговая льгота – Общероссийский классификатор продукции Издание соответствует коду 95 2000 ОК 005-93 (ОКП) Подписано в печать 01.12.2023. Выход в свет 15.12.2023. Формат 60×84 1/8. Бумага офсетная. Усл. печ.л. 37,0. Уч.-изд. л. 68,82. Изд. № 209. Заказ 296. Тираж 300 экз. Отпечатано в типографии Новосибирского государственного технического университета 630073, г. Новосибирск, пр. К. Маркса, 20
Vol. 25 No. 4 2023 3 EDITORIAL COUNCIL EDITORIAL BOARD EDITOR-IN-CHIEF: Anatoliy A. Bataev, D.Sc. (Engineering), Professor, Rector, Novosibirsk State Technical University, Novosibirsk, Russian Federation DEPUTIES EDITOR-IN-CHIEF: Vladimir V. Ivancivsky, D.Sc. (Engineering), Associate Professor, Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk, Russian Federation Vadim Y. Skeeba, Ph.D. (Engineering), Associate Professor, Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk, Russian Federation Editor of the English translation: Elena A. Lozhkina, Ph.D. (Engineering), Department of Material Science in Mechanical Engineering, Novosibirsk State Technical University, Novosibirsk, Russian Federation The journal is issued since 1999 Publication frequency – 4 numbers a year Data on the journal are published in «Ulrich's Periodical Directory» Journal “Obrabotka Metallov” (“Metal Working and Material Science”) has been Indexed in Clarivate Analytics Services. Novosibirsk State Technical University, Prospekt K. Marksa, 20, Novosibirsk, 630073, Russia Tel.: +7 (383) 346-17-75 http://journals.nstu.ru/obrabotka_metallov E-mail: metal_working@mail.ru; metal_working@corp.nstu.ru Journal “Obrabotka Metallov – Metal Working and Material Science” is indexed in the world's largest abstracting bibliographic and scientometric databases Web of Science and Scopus. Journal “Obrabotka Metallov” (“Metal Working & Material Science”) has entered into an electronic licensing relationship with EBSCO Publishing, the world's leading aggregator of full text journals, magazines and eBooks. The full text of JOURNAL can be found in the EBSCOhost™ databases.
OBRABOTKAMETALLOV Vol. 25 No. 4 2023 4 EDITORIAL COUNCIL EDITORIAL COUNCIL CHAIRMAN: Nikolai V. Pustovoy, D.Sc. (Engineering), Professor, President, Novosibirsk State Technical University, Novosibirsk, Russian Federation MEMBERS: The Federative Republic of Brazil: Alberto Moreira Jorge Junior, Dr.-Ing., Full Professor; Federal University of São Carlos, São Carlos The Federal Republic of Germany: Moniko Greif, Dr.-Ing., Professor, Hochschule RheinMain University of Applied Sciences, Russelsheim Florian Nürnberger, Dr.-Ing., Chief Engineer and Head of the Department “Technology of Materials”, Leibniz Universität Hannover, Garbsen; Thomas Hassel, Dr.-Ing., Head of Underwater Technology Center Hanover, Leibniz Universität Hannover, Garbsen The Spain: Andrey L. Chuvilin, Ph.D. (Physics and Mathematics), Ikerbasque Research Professor, Head of Electron Microscopy Laboratory “CIC nanoGUNE”, San Sebastian The Republic of Belarus: Fyodor I. Panteleenko, D.Sc. (Engineering), Professor, First Vice-Rector, Corresponding Member of National Academy of Sciences of Belarus, Belarusian National Technical University, Minsk The Ukraine: Sergiy V. Kovalevskyy, D.Sc. (Engineering), Professor, Vice Rector for Research and Academic Aff airs, Donbass State Engineering Academy, Kramatorsk The Russian Federation: Vladimir G. Atapin, D.Sc. (Engineering), Professor, Novosibirsk State Technical University, Novosibirsk; Victor P. Balkov, Deputy general director, Research and Development Tooling Institute “VNIIINSTRUMENT”, Moscow; Vladimir A. Bataev, D.Sc. (Engineering), Professor, Novosibirsk State Technical University, Novosibirsk; Vladimir G. Burov, D.Sc. (Engineering), Professor, Novosibirsk State Technical University, Novosibirsk; Aleksandr N. Korotkov, D.Sc. (Engineering), Professor, Kuzbass State Technical University, Kemerovo; Dmitry V. Lobanov, D.Sc. (Engineering), Associate Professor, I.N. Ulianov Chuvash State University, Cheboksary; Aleksey V. Makarov, D.Sc. (Engineering), Corresponding Member of RAS, Head of division, Head of laboratory (Laboratory of Mechanical Properties) M.N. Miheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), Yekaterinburg; Aleksandr G. Ovcharenko, D.Sc. (Engineering), Professor, Biysk Technological Institute, Biysk; Yuriy N. Saraev, D.Sc. (Engineering), Professor, Institute of Strength Physics and Materials Science, Russian Academy of Sciences (Siberian Branch), Tomsk; Alexander S. Yanyushkin, D.Sc. (Engineering), Professor, I.N. Ulianov Chuvash State University, Cheboksary
Vol. 25 No. 4 2023 5 CONTENTS OBRABOTKAMETALLOV TECHNOLOGY Akintseva A.V., Pereverzev P.P. Modeling the interrelation of the cutting force with the cutting depth and the volumes of the metal being removed by single grains in fl at grinding........................................................................................................................................ 6 Sharma S.S., Joshi A., Rajpoot Y.S. A systematic review of processing techniques for cellular metallic foam production................. 22 Karlina Yu.I., Kononenko R.V., Ivantsivsky V.V., Popov M.A., Deryugin F.F., Byankin V.E. Review of modern requirements for welding of pipe high-strength low-alloy steels.......................................................................................................................................... 36 Startsev E.A., Bakhmatov P.V. The infl uence of automatic arc welding modes on the geometric parameters of the seam of butt joints made of low-carbon steel, made using experimental fl ux......................................................................................................................... 61 Martyushev N.V., Kozlov V.N., Qi M., Baginskiy A.G., Han Z., Bovkun A.S. Milling martensitic steel blanks obtained using additive technologies................................................................................................................................................................................ 74 Loginov Yu.N., Zamaraeva Yu.V. Evaluation of the bars’ multichannel angular pressing scheme and its potential application in practice................................................................................................................................................................................................... 90 EQUIPMENT. INSTRUMENTS Rajpoot Y.S., SharmaA.K., Mishra V.N., Saxena K., Deepak D., Sharma S.S. Eff ect of tool pin profi le on the tensile characteristics of friction stir welded joints of AA8011.................................................................................................................................................... 105 Chinchanikar S., Gadge M.G. Performance modeling and multi-objective optimization during turning AISI 304 stainless steel using coated and coated-microblasted tools........................................................................................................................................................ 117 Ghule G.S., Sanap S., Chinchanikar S. Ultrasonic vibration-assisted hard turning of AISI 52100 steel: comparative evaluation and modeling using dimensional analysis........................................................................................................................................................ 136 Pivkin P.M., Ershov A.A., Mironov N.E., Nadykto A.B. Infl uence of the shape of the toroidal fl ank surface on the cutting wedge angles and mechanical stresses along the drill cutting edge...................................................................................................................... 151 MATERIAL SCIENCE Sokolov R.A., Muratov K.R., Venediktov A.N., Mamadaliev R.A. Infl uence of internal stresses on the intensity of corrosion processes in structural steel....................................................................................................................................................................... 167 Klimenov V.A., Kolubaev E.A., Han Z., Chumaevskii A.V., Dvilis E.S., Strelkova I.L., Drobyaz E.A., Yaremenko O.B., Kuranov A.E. Elastic modulus and hardness of Ti alloy obtained by wire-feed electron-beam additive manufacturing................... 180 Vorontsov A.V., Filippov A.V., Shamarin N.N., Moskvichev E.N., Novitskaya O.S., Knyazhev E.O., Denisova Yu.A., Leonov A.A., Denisov V.V. In situ crystal lattice analysis of nitride single-component and multilayer ZrN/CrN coatings in the process of thermal cycling.......................................................................................................................................................................................... 202 Rubtsov V.E., Panfi lov A.O., Kniazhev E.O., Nikolaeva A.V., Cheremnov A.M., Gusarova A.V., Beloborodov V.A., Chumaevskii A.V., Grinenko A.V., Kolubaev E.A. Infl uence of high-energy impact during plasma cutting on the structure and properties of surface layers of aluminum and titanium alloys................................................................................................................... 216 Bobylyov E.E., Storojenko I.D., Matorin A.A., Marchenko V.D. Features of the formation of Ni-Cr coatings obtained by diff usion alloying from low-melting liquid metal solutions..................................................................................................................................... 232 Burkov А.А., Konevtsov L.А., Dvornik М.И., Nikolenko S.V., Kulik M.A. Formation and investigation of the properties of FeWCrMoBC metallic glass coatings on carbon steel.......................................................................................................................... 244 Sharma S.S., Khatri R., Joshi A. A synergistic approach to the development of lightweight aluminium-based porous metallic foam using stir casting method........................................................................................................................................................................... 255 Strokach E.A., Kozhevnikov G.D., Pozhidaev A.A., Dobrovolsky S.V. Numerical study of titanium alloy high-velocity solid particle erosion.......................................................................................................................................................................................... 268 EDITORIALMATERIALS 284 FOUNDERS MATERIALS 295 CONTENTS
ОБРАБОТКА МЕТАЛЛОВ Том 25 № 4 2023 136 ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ Точение стали AISI 52100 с наложением ультразвуковых колебаний: сравнительная оценка и моделирование с использованием анализа размерностей Говинд Гуле 1, a, *, Сударшан Санап 1, b, Сатиш Чинчаникар 2, c 1 Университет искусств, дизайна и технологий Массачусетского технологического института, Пуне - 412201, Махараштра, Индия 2 Институт информационных технологий Вишвакармы, Кондва (Бадрек), Пуне - 411039, Махараштра, Индия a https://orcid.org/0000-0003-4331-3501, govindghulemasterofengineering@gmail.com; b https://orcid.org/0000-0002-3788-0692, sudarshan.sanap@mituniversity.edu.in; c https://orcid.org/0000-0002-4175-3098, satish.chinchanikar@viit.ac.in Обработка металлов (технология • оборудование • инструменты). 2023 Том 25 № 4 с. 136–150 ISSN: 1994-6309 (print) / 2541-819X (online) DOI: 10.17212/1994-6309-2023-25.4-136-150 Обработка металлов (технология • оборудование • инструменты) Сайт журнала: http://journals.nstu.ru/obrabotka_metallov ИНФОРМАЦИЯ О СТАТЬЕ УДК 621.7 История статьи: Поступила: 03 сентября 2023 Рецензирование: 17 сентября 2023 Принята к печати: 27 сентября 2023 Доступно онлайн: 15 декабря 2023 Ключевые слова: Ультразвуковые колебания Точение твердых материалов Метод подобия Теорема Бекингема Износ режущего инструмента Потребляемая электрическая мощность АННОТАЦИЯ Введение. Прецизионная обработка твердых и хрупких материалов является достаточно сложной, в связи с чем были разработаны новые и надежные технологии, например, точение с наложением ультразвуковых колебаний (UVAT), обеспечивающее повышенные скорость съема материала, качество поверхности и срок службы инструмента. Цель работы. Точение твердых материалов с использованием экономичного твердосплавного инструмента с покрытием вместо дорогостоящих керамических и КБН-пластин до сих пор не получило широкого распространения из-за износа инструмента и ограничений обработки. Для достижения лучшей обрабатываемости твердых материалов группа исследователей предприняла попытку токарной обработки, используя твердосплавный инструмент с различными покрытиями, различные методы охлаждения и др. Тем не менее исследователями было предпринято мало попыток по ультразвуковому точению твердых материалов (UVAHT). Более того, в открытой литературе редко сообщается о сравнительной оценке UVAHT с использованием анализа размерностей. Методы исследования. В данном исследовании проводится сравнительная оценка износа инструмента и потребляемой электрической мощности во время традиционного точения (CT) и ультразвукового точения твердых материалов (UVAHT) из стали AISI 52100 (62 HRC) с использованием твердосплавного инструмента TiAlSiN с PVD-покрытием. Эксперименты проводились с различной скоростью резания, подачей и глубиной резания, при этом частота и амплитуда колебаний оставались постоянными на уровне 20 кГц и 20 мкм соответственно. Далее была разработана теоретическая модель для прогнозирования износа инструмента и потребляемой электрической мощности с использованием концепции анализа размерностей, т. е. π-теоремы Бекингема, учитывающей влияние скорости резания, частоты и амплитуды колебаний при постоянной подаче и глубине резания 0,085 мм/об и 0,4 мм соответственно. Безразмерные группы созданы для выявления сложных связей и оптимизации условий обработки. Износ инструмента и потребляемая электрическая мощность измерялись экспериментально и статистически анализировались с использованием π-теоремы Бекингема. Результаты и обсуждение. Благодаря использованию анализа размерностей удалось получить представление о процессе UVAHT. Результаты показывают, что параметры ультразвуковых колебаний оказывают существенное влияние на износ инструмента и потребляемую электрическую мощность. Безразмерные группы представляют собой методическую основу для уточнения режимов обработки. Износ инструмента и потребляемая электрическая мощность возрастали с увеличением скорости резания, глубины резания и подачи. Однако этот эффект был более значимым при традиционном точении, чем при ультразвуковом точении твердых материалов. Потребление энергии возрастало с увеличением скорости резания, частоты и амплитуды колебаний. Однако увеличение потребляемой электрической мощности было более заметным при изменении скорости резания, чем при изменении частоты и амплитуды колебаний. Износ по задней поверхности возрастает с увеличением скорости резания и амплитуды колебаний и уменьшается с увеличением частоты колебаний. Это исследование способствует лучшему пониманию основной динамики UVAHT, что поможет улучшить технологические процессы прецизионной обработки твердых материалов. В статье исследуется практическое значение этих открытий для прецизионной обработки твердых материалов. Для цитирования: Гуле Г.С., Санап С., Чинчаникар С. Точение стали AISI 52100 с наложением ультразвуковых колебаний: сравнительная оценка и моделирование с использованием анализа размерностей // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 4. – С. 136–150. – DOI: 10.17212/1994-6309-2023-25.4-136-150. ______ *Адрес для переписки Гуле Говинд С., магистр, доцент Университет искусств, дизайна и технологий Массачусетского технологического института, Пуне - 412201, Махараштра, Индия Тел.: +91-7020742258, e-mail: govindghulemasterofengineering@gmail.com Введение Точение твердых материалов с наложением ультразвуковых колебаний (UVAHT) – это потенциальный метод обработки, который сочетает в себе преимущества традиционного точения
OBRABOTKAMETALLOV Vol. 25 No. 4 2023 137 EQUIPMENT. INSTRUMENTS с использованием ультразвуковых колебаний для улучшения обрабатываемости твердых материалов. Широко используемая подшипниковая сталь AISI 52100 отличается высокой твердостью, износостойкостью и стабильностью размеров. Точение с наложением ультразвуковых колебаний (UVAT) продемонстрировало огромный потенциал для улучшения обрабатываемости таких твердых материалов, позволяя повысить скорость съема материала и целостность поверхности, а также снизить износ инструмента [1–3]. При использовании традиционного метода точения твердых материалов, к которым относится сталь AISI 52100, возникает ряд сложностей: увеличиваются силы резания, растет температура на границе между инструментом и заготовкой, инструмент быстрее изнашивается, что ухудшает шероховатость поверхности и точность размеров обрабатываемых деталей. Использование UVAHT может решить эти проблемы за счет добавления высокочастотных ультразвуковых колебаний во время процесса токарной обработки. Физика процесса UVAHT предполагает распространение ультразвуковых колебаний через инструмент в заготовку, что приводит к микроразрушению, снижению сил резания и улучшенному удалению стружки. Такое динамическое воздействие на процесс резания изменяет механизм удаления материала и влияет на взаимодействие инструмента и заготовки, что приводит к повышению производительности резания. Однако для того, чтобы в полной мере использовать преимущества UVAHT при обработке стали AISI 52100, необходимо хорошо понимать влияние многочисленных технологических факторов и их взаимодействие. В последние годы точение твердых материалов с наложением ультразвуковых колебаний (UVAHT) привлекает большое внимание как потенциальная технология обработки твердых материалов, таких как сталь AISI 52100. В нескольких исследованиях изучалось влияние ультразвуковых колебаний на операции токарной обработки твердых материалов, а также потенциальное преимущество их использования для повышения целостности поверхности, снижения сил резания и продления срока службы инструмента. Анализ литературы дает обзор важных исследований, связанных с UVAHT и его использованием при обработке стали AISI 52100. В некоторых работах авторы сделали упор на ультразвуковое точение обычных материалов, подчеркивая снижение сил резания и высокое качество поверхности, обработанной с помощью этой технологии. Лю (Liu) и др. [4] изучали влияние ультразвуковых колебаний на обрабатываемость резанием стали AISI 1045 и обнаружили, что это значительно увеличивает срок службы инструмента и качество поверхности. Их исследования заложили основу для дальнейшего изучения возможности использования UVAHT для обработки твердых материалов, таких как сталь AISI 52100. Из-за широкого применения в промышленности точение твердой стали AISI 52100 вызвало интерес. Чтобы улучшить обрабатываемость этого материала, исследователи изучили различные параметры резания и геометрии инструмента. Авторы работы [5], например, исследовали влияние скорости резания и подачи на износ инструмента и шероховатость поверхности во время точения твердой стали AISI 52100. Эти исследования выявили трудности, связанные с традиционным твердым точением, и послужили стимулом для изучения других способов, таких как UVAHT. Использование ультразвуковых колебаний при токарной обработке показало значительные перспективы с точки зрения повышения производительности обработки. Было изучено влияние различных ультразвуковых параметров, таких как амплитуда и частота колебаний, на силы резания и целостность поверхности во время UVAHT. В работе [6] исследовали влияние амплитуды ультразвуковых колебаний на образование стружки и шероховатость поверхности во время твердого точения стали AISI 4140, что дало важное представление о динамическом влиянии ультразвуковых колебаний на удаление материала. В области механической обработки анализ размерностей часто применяется для исследования корреляции между параметрами процесса и показателями производительности. Авторы в работе [7] использовали анализ размерностей для изучения влияния настроек резания на шероховатость поверхности при твердом точении, заложив основу для применения этого метода к UVAHT. Аналогичным образом Чжан (Zhang)
ОБРАБОТКА МЕТАЛЛОВ Том 25 № 4 2023 138 ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ и др. [8] использовали анализ размерностей для исследования влияния параметров процесса при ультразвуковом фрезеровании, подчеркивая возможности его применения для оптимизации процессов обработки. Анализ размерностей – это надежный метод изучения процесса UVAHT и определения важных характеристик, влияющих на его успех. Этот метод предполагает выявление и формулирование безразмерных групп, связывающих важные переменные процесса, без необходимости проведения экспериментального исследования. Размерный анализ дает важную информацию о взаимодействии между многочисленными технологическими факторами и их влиянии на производительность обработки резанием за счет сведения сложных взаимосвязей к безразмерным параметрам. Авторы в работе [9] исследовали метод UVAT для обработки титанового сплава с использованием анализа размерностей для изучения влияния параметров ультразвуковых колебаний и обычных параметров точения на шероховатость поверхности и силы резания; были созданы безразмерные группы. Метод анализа размерностей оказался полезен для оптимизации параметров UVAT при обработке титановых сплавов. Ученые в работе [10] представили анализ размерностей, который использовался для исследования целостности поверхности во время UVAT. В ходе исследования было изучено, как параметры ультразвуковых колебаний и обычные параметры токарной обработки влияют на шероховатость поверхности, остаточное напряжение и микротвердость. Метод анализа размерностей помог определить важные параметры, влияющие на целостность поверхности, и позволил дать рекомендации по улучшению качества поверхности с помощью UVAT. Ученые в работе [11] предложили анализ размерностей, используемый для исследования целостности поверхности при UVAT закаленной стали AISI 4340. Безразмерные группы были сформированы для исследования влияния ультразвуковых колебаний и параметров резания на шероховатость поверхности, твердость и остаточные напряжения. Исследование выявило рациональность использования UVAT для улучшения целостности поверхности, а также полезность анализа размерностей при изучении процесса. Ученые в работе [12] провели эксперимент, который объяснил анализ размерностей ультразвукового микрорезания кремния. Безразмерные группы были созданы для исследования влияния параметров ультразвуковых колебаний и параметров резания на силы резания и качество поверхности. Метод анализа размерностей дал представление об оптимизации процесса микрорезания кремния. Целью данной исследовательской работы является сравнительная оценка традиционного твердого точения и твердого точения с применением ультразвуковых колебаний, а также разработка теоретической модели износа инструмента и потребляемой электрической мощности с использованием метода анализа размерностей. Модель должна быть разработана с использованием π-теоремы Бекингема, рассматривающей в качестве входных параметров скорость резания, плотность и твердость заготовки, амплитуду и частоту колебаний. Результаты этого исследования помогут оптимизировать UVAHT стали AISI 52100 и позволят сделать важные рекомендации по улучшению производительности механической обработки. Кроме того, результаты исследования станут полезным руководством для практиков отрасли, стремящихся повысить эффективность и качество операций твердого точения стали AISI 52100 с использованием ультразвуковых колебаний. UVAHT может найти широкое применение в секторах точного производства, в которых используются твердые и труднообрабатываемые материалы, путем расширения понимания этого нового процесса обработки. Методика исследования Конфигурация оборудования для UVAHT Система ультразвуковых колебаний совмещена с обычным токарным станком в экспериментальной установке для токарной обработки с применением ультразвуковых колебаний (UVAHT). Прецизионный токарный станок имеет моторизованный шпиндель и модифицированный держатель инструмента, специально предназначенный для установки ультразвукового инструмента (УЗИ), который представляет собой сборку из преобразователя, концентратора и утолщения, выступающего в качестве держа-
RkJQdWJsaXNoZXIy MTk0ODM1