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The algorithms based on the decomposition of a noisy image in an orthogonal basis of wavelet
functions have been widely used to filter images (especially contrasting ones) over the past four dec-
ades. In this case, most wavelet filtering algorithms are of a threshold nature, namely: the decomposi-
tion coefficient smaller in an absolute value of a certain threshold value is reset to zero; otherwise the
coefficient undergoes some (most often nonlinear) transformation. A certain (and very significant)
drawback of threshold algorithms is that all coefficients of a certain decomposition level are processed
with one identical threshold value (i.e., a constant value for all de-composition coefficients). This does
not allow taking into account the “individual energy” of each decomposition coefficient for its more
optimal processing. Therefore, we propose its own filtering factor for each coefficient, built on the basis
of the optimal Wiener filtering and where a filtering parameter is introduced to compensate for incom-
plete a priori information on the value of the processed decomposition coefficients. In order to select a
filtering parameter, a statistical approach has been proposed that makes it possible to estimate the opti-
mal value of this parameter with acceptable accuracy. The performed computational experiment has
shown the developed algorithm effectiveness for wavelet filtering of images.
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1. INTRODUCTION AND RESEARCH OBJECTIVES

In the last two decades, the algorithms, based on the representation of the fil-
tered image in the basis of wavelet functions are often used for image filtering [1, 2].
An overview of the wavelet functions used for this can be found in [3]. Algorithms
include three main stages [4, 5]:

1) calculation of direct discrete wavelet transform (finding the decomposition
coefficients for noisy image values);

2) processing of “noisy” decomposition coefficients;

3) calculation of the inverse discrete wavelet transform from the processed de-
composition coefficients (finding the “filtered” image values).

The combination of these three stages is called wavelet filtering. Obviously, the
quality of filtering a noisy image will depend both on the chosen decomposition basis
and on the decomposition coefficient processing algorithm, used at the second stage.
But it should be noted that the second factor plays a predominant role.

In threshold algorithms (which have become widespread in practice), the de-
composition coefficient, which is less in absolute value than a certain threshold
value, vanishes; otherwise, such a coefficient is preserved or undergoes some (in the
general case, nonlinear) transformation. In foreign recourses, such processing is
mentioned as thresholding. The threshold value is a kind of "control" parameter,
which value significantly depends on the filtering error (for more details, see [6, 7]).
An overview of the threshold functions used is given in [8]. In this case, the threshold
value can be set by one value for the coefficients of all decomposition levels (inde-
pendent threshold level) or for each decomposition level by a separate one (depend-
ent threshold level). Looking ahead, we note that in practice, “hard” and “soft”
threshold functions have become widespread which have very significant draw-
backs. The most important thing is that all coefficients of a certain decomposition
level are processed with one identical threshold value [4, 5]. This does not allow
taking into account the “individual energy” of each decomposition coefficient during
its thresholding and does not provide the possibility of obtaining minimal filtering
errors. In addition, the optimal value estimation of the threshold value (minimizing
the filtering error) is a very difficult task, in practice (for a review of various algo-
rithms for choosing a threshold, see [4, 7]).

An essential feature of multiplicative algorithms is the selection of an individ-
ual multiplier for each noisy decomposition coefficient (in foreign recourses, such
processing is called shrinkaging). An example is the Wiener wavelet filtering algo-
rithm, where the multiplier (varying in the interval) for each coefficient is determined
from the condition of the minimum mean square error in estimating each decompo-
sition coefficient, which guarantees a minimum root mean square error in filtering
the entire image (for more details, see [4, 9]). Unfortunately, the calculation of such
optimal multipliers requires setting the decomposition coefficients of the «exact»
(not noisy) image, but such information are absent, filtering real images. In [4, 9],
several quasi-optimal algorithms are proposed, which are an adaptation of the Wie-
ner filtering algorithm for filtering real images in practice, when the exact image is
not known.

A class of wavelet filtering algorithms was proposed in a number of works (for
example, see [10-12]), which occupy an intermediate place between the threshold
and Wiener algorithms (in the foreign literature they are called neighshrinking) due
to the decomposition coefficients processing. These algorithms, more or less, take



A locally adaptive wavelet filtering algorithm for images 27

into account the energy of nearby coefficients, processing a noisy decomposition
coefficient. However, the proposed expressions for calculating the filtering factor
contain values, which definitions are of an intuitive nature; it does not allow obtain-
ing the minimum error in image filtering [12, 13]. The parameter is introduced
in [14], which choice allows approaching the minimum filtering error to a certain
extent, in order to minimize the filtering error.

In our research paper, we solve the problem of constructing a wavelet filtering
algorithm, where there is a filtering factor that changes in the interval [0,1] for each
decomposition coefficient. Filtering parameter is introduced to compensate for in-
complete a priori information about the value of the processed decomposition coef-
ficients. In order to select this parameter, a statistical approach has been proposed,
which makes it possible to estimate the optimal (in terms of the minimum mean
square error) value of the filtering parameter with acceptable accuracy. The per-
formed computational experiment has shown the effectiveness of the developed lo-
cally adaptive algorithm for wavelet filtering of images.

2. ADAPTIVE WAVELET FILTERING ALGORITHM

Any image can be interpreted as a function of two variables f(x,y). Let us

define the basic functions for the wavelet decomposition of such a function. Tradi-
tionally in the scientific recourses, a scalable function (paternal wavelet) is denoted
as @(x), but y(x) — wavelet (mother wavelet). Using the operations of scaling and

shifting, orthonormal basis functions are formed from these ones {(p o (x)} ,
{W i (x)} in the space of one variable functions f(x) [15, 16]. Tensor product of

functions {(p . (x)}, {w i (x)} generates the following basis functions for the de-

composition of two variables functions:

{00, 1mx.2)=0,,)9; (M} {OV ) 1 (23 = 0, , (W}, (M)}
(1)
{w(pj,n,m (xay) = Wj,n (x) ’ (pj,m ()/)}; {WWj,m,n (x’y) = Wj,n (X)WJ,m (y)}

The corresponding decomposition coefficients are usually called as follows [4]:
e approximating coefficients A ; are obtained as the decomposition coefficients

in the basis {(p(pj,n,m (x,y)} ;

e horizontal detailing factors j are obtained as the decomposition coeffi-
cients in the basis {(pwj,n’m (x,y)} ;

e vertical detailing factors Vj are obtained as the decomposition coefficients
in the basis {w(pj,n,m (x,y)} ;

e diagonal detailing coefficients D ; are obtained as the decomposition coeffi-

cients in the basis {qnuj,n’m (x,y)} .
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In practice, the image is set by the matrix F the size of Ny X Ny (decompo-
sition level j). At the first level of decomposition (number j, +1) approximating

coefficients —are  calculated 4 :{aa Jo +1,n,m}, detailing  coefficients

H z{adjoﬂ,n,m}’ " z{daj0+l,n,m} , D z{ddjoﬂ,n,m} Dy z{ddjoﬂ,k,n}'
At the second level of decomposition (number j, + 2 ) the matrix of coefficients is

subjected to the similar processing 4 %(Az, Hy, V>, Dz) . Summarizing the data,
we come to the following decomposition scheme:

F%(Al,Hl,Vl,l)l)—)(Az,H2,V2,D2,H1,V1,D1)—>...

Let us note the regularity of changing two-dimensional arrays sizes of decom-
position coefficients, namely: at each decomposition level, the sizes of new coefti-
cients arrays are halved compared to the previous arrays. In this case, the sum of the
of coefficients arrays size is equal to the size of the original matrix F, which indicates
the "volume" preservation of information contained in F.

For example, let the original matrix F has sizes Ny =512 (number of rows) x
x Ny =384 (number of columns). Then the arrays of coefficients 4;, H;, V;, D,
have sizes 256192, arrays of coefficients 4,, H,, V5, D, —have sizes 128%x96
SO on.

The inverse two-dimensional wavelet transform is carried out according to the
scheme:

...%(Az,Hz,Vz,Dz,Hl,VI,DI)%<A1,H1,V1,I)1)—)F.

According to the level j by j—1 all matrices sizes of the coefficients are dou-
bled.

We suppose the registered image values f(x,y) are represented by matrix F
by the size Ny X Ny, which elements can be represented:

Fix iy =Fiy iy ¥ Niy iy » 2)

where F:

i, — exact” image values, n; , — random measurement noise with
Xty ix.ly

zero mean and variance G%l and values 1 iy iy Dot correlated with each other. It was

shown (see, for example, [4,9]) that in the wavelet decomposition of the matrix F
errors in calculating detailing coefficients /7 ;, V;, D; by 2 order and more than

the approximating coefficients A ;. Therefore, only these detailing coefficients are

processed at the second stage of wavelet filtering. For the convenience of further

recording, any of the detailing coefficients will be denoted as d where the indi-

n,m>
ces n, m determine the row and column numbers of the corresponding matrix of
decomposition coefficients (the number of the decomposition level is going down).
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We should suppose that matrix, used for the wavelet decomposition, F basis
functions (1) are orthonormal (see [4, 15, 16] for more details). Then it is proved
[4, 9] that the expansion coefficients are random variables and:

e one can take the representation d,, ,, =d,, ,, +€, , , Where d,, ,, —exact im-
age decomposition coefficients, €, , —random coefficient calculation error, condi-

tioned by noise-induced image measurement;
e have a mathematical expectation M [dnm] =d,, and variance

Ddyn]=Dlern] =05
e errors €, ,, coefficient calculations are not correlated with each other.
There is a question: how the random decomposition coefficients should be pro-
cessed a?n’m or how to build an estimate a?n’m for the exact coefficient d,, ,, , in

order to “filter out” the error as much as possible €, ,, and distort the coefficient

itself as little as possible d,, ,, , or get the minimum systematic error? In order to

answer this question let us consider the mean square error (MSE) of the estimation,
which we define by the expression as a criterion characterizing the total estimation
error:

AEY=M| 33y j = dnm) | (3)
j nm
where j — decomposition level. It was proved [4, 9], that the minimum MSE is

achieved if the estimate d, , is defined by the expression:

n,m
doptn,m - Woptn,m d”’m ’ (4)
where the optimal filtering factor Wopt,, has a form:
1
Woptn,m = —2 . (5)
n
I+
dn,m
In this case, MSE of the coefficient d,, ,, is defined as:
. . 2 S,
A(doptn,m ) =M (doptn,m B dn,m ) - m d”’m ) (6)
n,m n
Unfortunately, the constructed optimal multiplier (5) includes the ratio “noise /
2
signal” So = 2—“ , which is unknown due to ignorance of the values of “exact”
' dl’l m

decomposition coefficient d,, ,,, is in the denominator. Expressions (4), (5) are of
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theoretical interest, since they indicate what to strive for, constructing estimates that
are implemented in practice. One of such estimates, based on iterative refinement of
the “noise / signal”, was constructed in [4, 9].

We propose another approach to constructing a quasi-optimal filtering factor,

which can be implemented in practice and where dim is estimated by the nearby
noisy expansion coefficients. We define a rectangular aperture 4, ,, centered at

point (n, m) of size(2Ly +1)(2Ly +1), which contains the matrix elements of the

processed coefficients with indices {n—Ly <iy Sn+Ly; m—Ly <iy <m+Ly}.
2

».m We define the value:

Further, for each coefficient d

2 1 2
Vinm (2Ly +1)(2Ly +1) Z.X’EA”’," B ™

which can be interpreted as a sample estimate for the quantity d 3,” . Then the quasi-

optimal estimate for the filtering factor (5) can be written in the form:

N 1
T =, ®)
On
1+ (XT
Va,m

and the quasi-optimal estimate itself c;’n’m for d,, ,, we calculate as:

1 ~

dn,m = 1’?}n,mdn,m = ) dn,m . )
On
Vi,m

These two expressions contain (in contrast to (5)) the filtering parameter, intro-

duced to “compensate” the errors in the estimation of the value d,im . How should

we choose this option? Obviously, it is desirable to take the quantity Oy, as such a
parameter, minimizing MSE of wavelet filtering (3). Unfortunately, due to ignorance
of the expansion coefficients dn’m the exact image cannot be calculated with the
exact value Ol . Therefore, we modify the selection algorithm, used to estimate the

optimal threshold values in the threshold wavelet filtering algorithms (for more de-
tails, see [4, 9]). We introduce the following statistical criterion:

1 My Ny . . .
P (@) =—52 2 Fiyy (FiXJY _F;XaiY(OL))’ (10)
Gn iy=1 lX=1
iy iy
transform of the expansion coefficients (9) for a given filtering parameter o . As an

where (o) is an matrix element of the image, obtained by the inverse wavelet
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estimate for the optimal filtering parameter Oy, the value o.,, is taken, at which the

random variable py (o) is in the interval

g , 0 , 11
By "By (b
2 2
where 85 , 9 g — quintiles X%\, — distributions with the number of freedom
EN 1-EN
2 2

degrees N =Ny Ny levels %, 1—% , respectively; 3 — the probability of the first

kind error, testing the statistical hypothesis about the optimality of the parameter o,
(usually B=0.05). In the process of filtering images, the value N >30 and therefore

in order to calculate the quantiles X%v — distribution at $=0.05 use expressions:
B9.02s.0 =N —LIV2N ,  Bgo75 5 =N +1.96V2N . (12)
We should note that the calculation is reduced to solving the nonlinear equation
Pw (a) = N. (13)

However, the iterative process stops as soon as Py, (oc(”)) is in the interval (11).
The number of iterations is much less than, searching for the root of a nonlinear
equation with a given accuracy e [107%, 107°]. This makes it possible to effec-

tively use “slow” iterative algorithms (for example, the dichotomy method — dividing
a segment in half).

Introducing local evaluation V%,m and choosing a filtering parameter o from

the condition of the minimum filtering MSE (i.e., its adaptation to a specific pro-
cessed image), allows us to call the proposed wavelet filtering algorithm with a fil-
tering factor (8) a locally adaptive algorithm.

An essential feature of the computation algorithm is the use of noise variance

to compute G% . In practice, this value is unknown, and in this case, it is possible to

use the estimate

~ 2

2 median(|d,, , |)

Oy = _—,
0.6745

where operator median(| a?,,,m |) calculates the median of the absolute values of di-

agonal detailing coefficients of the decomposition level jj +1.
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3. COMPUTATIONAL EXPERIMENT RESULTS

Due to the nonlinear nature of the estimation procedure it is impossible to do
analytical studies of the filtering factor (8) and therefore a numerous computational
experiment were carried out to filter different (by spectral composition) images.
Let us highlight the experiment results with the LENA image (see Fig. 1), which is
often used in foreign publications as a test image. In Fig. 1, ) an exact image is
shown, in Fig. 1, b) — noisy image with relative noise level 87] =0.10, where

Ny 2
Z Z ( lX,lY lX,ly)

8 — lelyl ) (14)

Ul Ny 2
¥ 3 (fy)

lelyl

Fig. 1. Accurate and noisy images

One can see a significant distortion of the exact image by normally distributed
measurement noise. On fig. 2 shows the dependence on the smoothing parameter o :
e relative smoothing error (solid curve)

Z):( Z( iy, zy(a) 1X,ly)2

Sp(@)= (MG (15)
Z z ( lX ly)
lX—l lY =1

e statistics Py (0t) — a dotted curve is shown in the figure;
e quintiles 99 025 7> 9975 5 — are shown by dashed lines.

For the convenience of display in the figure, the last three quantities are divided
by the value N = Ny Ny =65536. As it follows from (11), as the filtering parameter
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values are accepted for which the statistics values are between dashed lines (quin-
tiles (12)), which, have become one dashed line due to the scale of the figure. There-
fore, as an estimate oy the value is taken o, for which the function py (o) is

between these dashed lines.

0.01
0.1 1 10

Fig. 2. Characteristics algorithm Fig. 3. Filtered image of LENA
of filtration

An analysis of these graphs allows us to conclude that the proposed approach
to choosing a filtering parameter allows us to calculate values oy from the region

of the minimum of the relative filtering error. In this experiment, at 87] =0.10, the

relative filtering error 8 (o) is 0.046. The filtered image is shown in fig. 3.
For a relative noise level of 0.15 — 8 (o) equals 0.061, which indicates good
stability of the proposed filtering algorithm to measurement noise.

CONCLUSION

The proposed locally adaptive filtering algorithm is essentially an adaptation of
the optimal Wiener algorithm to the real information available in this experiment.
The introduced filtering parameter and its choice from the condition of the minimum
MSE makes it possible to compensate for the lack of a priori information on the
expansion coefficients of the exact image. The comparison with the filtering results,
the same noisy images by threshold algorithms (for more details see [4, 7]) shows
that the proposed algorithm has 15...20 % less filtering MSE, although it requires
more operations due to the need to calculate the values (7).
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JIoKanbHo-adanmuenblil an20pumm 6eile1em-Quibmpayuu u3ooparcenuii’
F0.E. BOCKOBOHHHUKOB

AHHOTAIUSA

Ha npoTsbkeHUH YeThIpex HOCIeIHNX NeCATHICTHH U1 QriibTpanun n3o0paskeHui (oco-
GEHHO KOHTPACTHBIX) IIMPOKO UCIOJIb3YIOTCS AITOPUTMbI, OCHOBAHHbBIEC Ha Pa3JI0JKEHUH 3alllyM-
JICHHOTO M300pakKeHHsI B OPTOrOHAIBFHOM 0Oasuce BelBner-(ynkimii. [Ipr 3ToM GONBIIMHCTBO

* Received 30 November 2022.



A locally adaptive wavelet filtering algorithm for images 35

aITOPUTMOB BeHBIET-QUIBTPALIMU HOCSAT HOPOTOBBI XapakTep, a UMEHHO: KO3 HULUEHT pa3-
JIO’KCHHS, MEHBLINIT 110 aGCOMIOTHOI BEJIMYNHE, HEKOTOPOI TOPOrOBOH BEJIMYHHBI 3aHYJISCTCS,
B NPOTUBHOM Cilydae KO3()(HLIMEHT IOABEPraeTcsi HEKOTOPOMY (Yallle BCEro HEeJIHMHEHHOMY)
npeobpazoBanuto. OnpeneneHHbIM (M BeCbMa CYIIECTBEHHBIM) HEAOCTATKOM MOPOTOBBIX aJro-
PHUTMOB SIBISIETCS TO, YTO BCE KOI(QPUIIMEHTHI ONPEACIICHHOTO YPOBHSI pa3iioxkeHHs: 00pabaTel-
BAaIOTCS ¢ OJHOM OJWHAKOBOW MOPOTOBOH BEIHMYMHON (T. €. TIOCTOSIHHOW BETMYMHOM IS BCEX
K03 (OHULIHEHTOB pa3okKeHHUs ). DTO HE MO3BOJISACT YyUMTHIBATh «MHIAUBHAYAIbHYIO SHEPTHIOY
Ka)XJ0ro Kod(duimenta paziokeHus: 1uisi Oosee onTUMaibHON ero obpaborku. [Toatomy B
HacTosIeH paboTe mpeiaraeTest 1 KaxIoro KodduimenTa cBoil GuiIbTPyOMMil MHOKHI-
Tellb, TOCTPOCHHbIH Ha OCHOBE ONTUMAIIbHOI BHHEPOBCKOM (DHIBTPALIMH U B KOTOPOM IS KOM-
MEHCAIH HETIOJTHON UCXOAHOM MH(popManuu o BennunHe 00padaTeiBacMoro Ko3h(hUIHeHTOB
pa3nokeHHs: BBOIUTCS mapamerp ¢uibrpaunu. s Beioopa mapamerpa GUIbTpanuy Ipeio-
KEH CTATUCTUYECKHII TOJX 01, TO3BOJIAIOLINIT ¢ HPUEMIIEMON TOYHOCTBIO OLICHUTh ONTHMAJIbHOE
3HAUEHUE ITOr0 Napamerpa. BEINOIHEHHBII BEIYUCIUTENBHBIA IKCIEPUMEHT IoKazan dddex-
THUBHOCTb Pa3pabOTaHHOTO aJIrOPUTMA BEHBIIET-(QUIbTPALIMN N300PAKCHUH.

KnroueBbie cioBa: BeiiBiner-QyHKIMU, AByMEpHBIE BEHUBIET-(QYHKIUH, alTOPUTMBI
BeiiBIeT-QUIbTpaU U300paKeHUH, OMIMOKH BeUBIICT-QUIbTpaLny, (QUIBTPYIONHE MHOXH-
TEJH, ONTUMAJIBHBINH (QUIBTPYIOIINA MHOKHUTENb, KBa3HONITUMAIBHBINA (PUIBTPYIOIINA MHOKH-
TeJlb, BBIOOP ONTHMAIIBHOTO IapameTpa QHIbTpaluu
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