Рассмотрена задача оценки параметров универсального лямбда-распределения методом моментов. Описаны способы вычисления моментов, такие как классическое среднее, усеченное среднее, винзоризированное среднее, среднее по шорту. С помощью вычислительных экспериментов показана эффективность применения робастных оценок для идентификации лямбда-распределения. Получено, что при отсутствии в выборке аномальных наблюдений наиболее точные результаты оценивания показал метод моментов на основе классических оценок моментов, при появлении выбросов оценки лямбда-распределения полученные методом моментов на основе усеченного среднего и винзоризированного среднего являются наиболее точными, а метод моментов с использованием среднего по шорту некорректно описывает форму распределения. Данная идея идентификации лямбда-распределения была применена в алгоритмах модификаций разработанного авторами ранее метода адаптивного оценивания параметров регрессионных зависимостей. Авторами было проведено исследование данных алгоритмов при различных условиях вычислительных экспериментов. Получено, что при идентификации лямбда-распределения в случае отсутствия в выборке выбросов наиболее точные результаты показал метод моментов на основе классических моментов. При появлении в выборке грубых ошибок наблюдений более точные результаты оценивания дают предложенные модификации метода моментов, что говорит об их устойчивости.
Работа выполнена при финансовой поддержке Министерства образования и науки РФ по госудаственному заданию (проект 2.7996.2017/8.9).
Тимофеев В.С., Хайленко Е.А. Робастные оценки моментов при идентификации лямбда распределения в рамках адаптивного оценивания // Доклады АН ВШ РФ. – 2017. – № 4 (37). – C. 101–111. doi: 10.17212/1727-2769-2017-4-101-111
Timofeev V.S., Khailenko E.A. Robastnye otsenki momentov pri identifikatsii lyambda-raspredeleniya v ramkakh adaptivnogo otsenivaniya [Robust estimates of moments in the identification of generalized lambda-distribution within the adaptive regression model estimation]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii – Proceedings of the Russian higher school Academy of sciences, 2017, no. 4 (37), pp. 101–111. doi: 10.17212/1727-2769-2017-4-
101-111