Proceedings of the RHSAS

PROCEEDINGS OF THE RUSSIAN HIGHER SCHOOL
ACADEMY OF SCIENCES

Print ISSN: 1727-2769    Online ISSN: 2658-3747
English | Русский

Recent issue
№2(67) April - June 2025

Features of the electromechanical interactions in MEMS with a lateral dis-placement of non-parallel electrodes in the voltage controlled mode

Issue No 4 (41) October - December 2018
Authors:

Sinitskiy Rodion Evgenevich,
Dragunov Valery Pavlovich,
Rudenko Igor Evgenevich,
Koloskov Dmitrii Borisovich,
Dragunova Evgeniya Valer’evna
DOI: http://dx.doi.org/10.17212/1727-2769-2018-4-93-109
Abstract

The paper presents the results of the research into the effect of the electrodes non-parallelism on electromechanical interactions in MEMS with a lateral displacement of electrodes in the vol­tage controlled operating mode. The analysis was carried out for two cases of a movable electrode movement: with increasing and with decreasing an average interelectrode gap. Expressions were obtained for the calculation of capacitances, potential energies, electrostatic forces, critical vol­tage, and a critical displacement of a movable electrode at different slopes of the electrodes.



It was established that in MEMS with a lateral displacement of non-parallel electrodes, with increasing an average interelectrode gap, a controlled displacement of the movable electrode is possible in the entire range of its length at any applied voltages and a mutual slope of the electrodes.



It was found that in MEMS with a  lateral displacement of non-parallel electrodes, with decreasing an average interelectrode gap, an unstable state of the system is possible, leading to an uncontrolled movement of the movable electrode directed towards increasing an electrode overlap area – a critical effect (similar to “pull-in instability”). Thus, the movement of a movable electrode with increasing an average interelectrode gap is unstable in contrast to the movement with decreasing an average interelectrode gap. After the onset of a critical state, the system ceases to respond to changes in control voltage. It was shown that this critical effect is possible with system parameters  and . It was ascertained that in this case, with an increase in the mutual slope of the electrodes, the value of a critical displacement of the movable electrode decreases, and the dependence of the critical voltage  on  is almost linear at .


Keywords: MEMS, lateral displacement of electrodes, microelectromechanical capacitor, electric force, voltage controlled mode, critical effect, controlled electrode displacement, critical values

References
  1. Chiang C.-T. Design of a CMOS MEMS accelerometer used in IoT devices for seismic detection. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, vol. 8, no. 3, pp. 566–577. doi: 10.1109/JETCAS.2018.2825604.
  2. Nazdrowicz J., Napieralski A. Electrical equivalent model of MEMS accelerometer in Matlab/SIMULINK environment. 2018 XIVth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH): proceedings, Lviv, Ukraine, 2018, pp. 69–72. doi: 10.1109/MEMSTECH.2018.8365704.
  3. Ciotirca L.E., Bernal O., Enjalbert J., Cassagnes T., Tap H., Beaulaton H., Sahin S. New stability method of a multirate controller for a three-axis high-Q MEMS accelerometer with simultaneous electrostatic damping. IEEE Sensors Journal, 2018, vol. 18, no. 15, pp. 6106–6114. doi: 10.1109/JSEN.2018.2844682.
  4. Zakriya M., Elfadel I.M., Rasras M. High dynamic range Z-axis hybrid spring MEMS ca–pacitive accelerometer. 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS, Roma, Italy, 2018, pp. 1–4. doi: 10.1109/DTIP.2018.8394219.
  5. Nazdrowicz J., Szenner M., Maj C., Napieralski A. Different methods of capacitive comb drive MEMS accelerometer simulations. 2018 Baltic URSI Symposium, Poznan?, Poland, 2018, pp. 254–256. doi: 10.23919/URSI.2018.8406772.
  6. Hu Q., Li N., Xing C., Mei W., Sun P. Design, fabrication, and calibration of a full silicon WLP MEMS sandwich accelerometer. 2018 19th International Conference on Electronic Packaging Technology, Shanghai, China, 2018, pp. 919–933. doi: 10.1109/ICEPT. 2018.8480835.
  7. Aydemir A., Akin T. Fabrication of a three-axis capacitive MEMS accelerometer on a sin–gle substrate. 2015 IEEE SENSORS, Busan, South Korea, 2015, pp. 1–4. doi: 10.1109/ ICSENS.2015.7370307.
  8. Shah M.A., Iqbal F., Lee B.-L. Design and analysis of a single-structure three-axis MEMS gyroscope with improved coupling spring. 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems. Piscataway, NJ, 2016, pp. 188–191. doi: 10.1109/JMEMS.2017.2754506.
  9. Minotti P., Dellea S., Mussi G., Bonfanti A., Facchinetti S., Tocchio A., Zega V., Comi C., Lacaita A.L. Langfelder high scale-factor stability frequency-modulated MEMS gyroscope: 3-axis sensor and integrated electronics design. IEEE Transactions on Industrial Electronics, 2018, vol. 65, no. 6, pp. 5040–5050. doi: 10.1109/TIE.2017.2772212.
  10. Kou Z., Liu Ј., Сао H., Feng H., Ren J., Kang Q., Shi Y. Design and fabrication of а novel MEMS vibrating ring gyroscope. 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference, Chongqing, China, 2017, pp. 131–134. doi: 10.1109/ ITOEC.2017.8122396.
  11. Wu G., Chua G.L., Singh N., Gu Y. А quadruple mass vibrating MEMS gyroscope with symmetric design. IEEE Sensors Letters, 2018, vol. 2, no. 4. doi: 10.1109/LSENS.2018. 2873000.
  12. Fang W., Huang Q. A study of the mechanical reliability of a MEMS microphone. Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits IPFA 2013, Suzhou, China, 2013, pp. 716–719. doi: 10.1109/IPFA.2013. 6599261.
  13. Czamy J.,Walther A., Desloges B., Robert Ph., Redon E., Verdot T., Ege K., Guianvarc'h C., Guyader J.L. New architecture of MEMS microphone for enhanced performances. 2013 International Semiconductor Conference Dresden–Grenoble, 2013, pp. 1–4. doi: 10.1109/ ISCDG.2013.6656312.
  14. Muralidhar Y.C., Somesh B.S., Neethu K.N., Yeshashwini L.R., Naganja V.S., Pinjare S.L. Design and simulation of silicon and polymer based piezoelectric MEMS microphone. 2013 International Conference on Emerging Trends in Communication, Control, Signal Processing and Computing Applications, Bangalore, India, 2013, pp. 1–6. doi: 10.1109/ C2SPCA.2013.6749409.
  15. Yoo I., Sim J., Yang S., Kim H. Development of capacitive MEMS microphone based on slit-edge for high signal-to-noise ratio. 2018 IEEE Micro Electro Mechanical Systems, Belfast, Northern Ireland, 2018, pp. 1072–1075. doi: 10.1109/MEMSYS.2018.8346745.
  16. Wu Y., Wang J., Zhang X., Zhang C., Ding G. Modeling of a bistable MEMS mechanism with torsion/cantilever beams. 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 2010, pp. 53–156. doi: 10.1109/ NEMS.2010.5592168.
  17. Sindhuja P., Sharma V., Upadhayay M.D., Singh A.V. Simulation and analysis of actuation voltage of electrostatically actuated RF MEMS cantilever and fixed – fixed switches with variable beam parameters. 2016 International Conference on Micro-Electronics and Telecommunication Engineering, 2016, pp. 450–454. doi: 10.1109/ICMETE.2016.84.
  18. Chu C., Liao X., Chen C. Improved dynamic range of microwave power sensor by MEMS cantilever beam. Journal of Microelectromechanical Systems, 2017, vol. 26, no. 6, pp. 1183–1185. doi: 10.1109/JMEMS.2017.2754506.
  19. Uno A., Hirai Y., Tsuchiya T., Tabata O. MEMS deformable mirror actuated by electrostatic piston array. 2016 International Conference on Optical MEMS and Nanophotonics, Singapore, 2016, pp. 1–2. doi: 10.1109/OMN.2016.7565822.
  20. Chen Q., Ding J., Wang W., Xie H. A high fill factor 1×20 MEMS mirror array based on ISC bimorph structure. 2016 International Conference on Optical MEMS and Nanophotonics, Singapore, 2016, pp. 1–2. doi: 10.1109/OMN.2016.7565912.
  21. Wang D., Han X., Liu H., Chen Q., Wang W., Xie H. Portable Fourier transform infrared spectrometer based on an electrothermal MEMS mirror. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems, Kaohsiung, Taiwan, 2017, pp. 265–268. doi: 10.1109/TRANSDUCERS.2017.7994039.
  22. Grzebyk T. MEMS vacuum pumps. Journal of Microelectromechanical Systems, 2017, vol. 26, no. 4, pp. 705–717. doi: 10.1109/JMEMS.2017.2676820.
  23. Davidovikj D., Bouwmeester D., Zant H.S.Ј. van der, Steeneken P.G. Graphene gas pumps. 2018 IEEE Micro Electro Mechanical Systems, Belfast, Northern Ireland, 2018, pp. 628–631. doi: 10.1109/MEMSYS.2018.8346632.
  24. Okamoto Y., Takehara H., Fujimoto K., Ichiki T., Ohba T., Mita Y. On-chip high-voltage charge pump with MEMS post-processed standard 5-V CMOS on SOI for electroosmotic flow micropumps. IEEE Electron Device Letters, 2018, vol. 39, no. 6, pp. 851–854. doi: 10.1109/LED.2018.2829925.
  25. Kostsov E.G. Sostoyanie i perspektivy mikro- i nanoelektromekhaniki [Status and prospects of micro- and nanoelectromechanics]. Avtometriya – Optoelectronics, Instrumentation and Data Processing, 2009, vol. 43, no. 3, pp. 3–52. (In Russian).
  26. Ostertak D.I., Pelmenev K.G. Analiz elektrostaticheskikh vzaimodeistvii v ploskoparallel'nykh MEMS so smescheniem elektrodov [An analysis of electrostatic interactions in pa­rallel-plate MEMS with an electrode offset]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii – Proceedings of the Russian higher school Academy of sciences, 2018, no. 1 (38), pp. 7–21. doi: 10.17212/1727-2769-2018-1-7-21.
  27. Dragunov V.P., Ostertak D.I., Dragunova E.V. Osobennosti funktsionirovaniya nesbalansirovannykh MEMS [Peculiarities of unbalanced MEMS operation]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii – Proceedings of the Russian higher school Academy of sciences, 2017, no. 4 (37), pp. 58–69. doi: 10.17212/1727-2769-2017-4-58-69.
  28. Dragunov V.P., Kiselev D.E., Sinitskii R.E. Osobennosti elektromekhanicheskikh vzaimodeistvii v MEMS s neparallel'nymi elektrodami [Specific features of the electromechanical interactions in МEМS with nonparallel electrodes]. Nano- i mikrosistemnaya tekhnika – Journal of Nano- and Microsystem Technique, 2017, vol. 19, no. 6, pp. 360–369. doi: 10.17587/nmst.19.360-369.
  29. Dragunov V.P., Ostertak D.I. Raschet lateral'noi sostavlyayushchei elektrostaticheskoi sily v MEMS [The calculation of lateral electrostatic force component of MEMS]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universitetaScience bulletin of the Novosibirsk state technical university, 2009, no. 1 (34), pp. 229–233.
  30. Dragunov V.P., Ostertak D.I. Elektrostaticheskie vzaimodeistviya v MEMS so vstrechno-shtyrevoi strukturoi [Coulomb interactions in interdigitated MEMS]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii – Proceedings of the Russian higher school Academy of sciences, 2009, no. 1 (12), pp. 99–106.
  31. Dragunov V.P., Kostsov E.G. MEM elektrostaticheskii generator energii [Microelectromechanical Electrostatic Power Generator]. Nano- i mikrosistemnaya tekhnika – Journal of Nano- and Microsystem Technique, 2007, no. 11, pp. 47–52.
For citation:

Sinitskiy R.E., Dragunov V.P., Rudenko I.E., Koloskov D.B., Dragunova E.V. Osobennosti
elektromekhanicheskikh vzaimodeistvii v MEMS s lateral'nym smeshcheniem neparallel'nykh elektrodov v rezhime s kontroliruemym napryazheniem [Features of electromechanical interactions in MEMS with lateral displacement of non-parallel electrodes in the voltage controlled mode]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii – Proceedings of the Russian higher school Academy of sciences, 2018, no. 4 (41), pp. 93–109. doi: 10.17212/1727-2769-2018-4-93-109.

Views: 2657