Proceedings of the RHSAS

PROCEEDINGS OF THE RUSSIAN HIGHER SCHOOL
ACADEMY OF SCIENCES

Print ISSN: 1727-2769    Online ISSN: 2658-3747
English | Русский

Recent issue
№2(67) April - June 2025

Numerical solution of masking and skatterer equivalence problems taking into account the change of polarization of the probe signal

Issue No 3 (44) July-September 2019
Authors:

Soppa Mikhail Sergeevich
DOI: http://dx.doi.org/10.17212/1727-2769-2019-3-7-17
Abstract

The article investigates the properties of scatterers with an impedance surface when the direction of linear polarization of the incident electromagnetic wave changes. It has been established that between the solutions of inverse problems of the synthesis of impedance coatings with diffe­rent polarizations, there is a functional relationship that allows us to get to the integrooperator equation to determine the coating dual to the original one. It differs in the fact that if you simultaneously change the coating and the polarization of the incident wave, the scattering diagram (SD) will not change. This allows you to synthesize a cross-polarization masking coating, in which the SD does not change when polarization changes to a transverse polarization. An approach to the construction of scatterers with the property of cross-polarization equivalence is proposed. The advantage of the proposed algorithms for the synthesis of surface impedance distributions is that they do not require the use of regularization procedures. The formulation of an optimization problem that provides coatings in classes of functions with a minimum norm is studied.


Keywords: integral equation, electromagnetic scattering, linear polarization, impedance coating, masking, equivalent scatterers, boundary element method.

References
  1. Eremin Yu.A., Sveshnikov A.G. O sushchestvovanii ekvivalentnykh rasseivatelei v obratnykh zadachakh teorii difraktsii [On the existence of equivalent scatterers in inverse problems of diffraction theory]. Doklady Akademii nauk SSSR – Proceedings of the Academy of Sciences of the USSR, 1987, vol. 297, no. 5, pp. 1095–1099.
  2. Eremin Yu.A. K probleme sushchestvovaniya nevidimogo rasseivatelya v teorii difraktsii [On the problem of the existence of an invisible scatterer in diffraction theory]. Differentsial'nye uravneniya – Differential Equations, 1988, vol. 24, no. 4, pp. 684–687.
  3. Pendry J.B., Shurig D., Smith D.R. Controlling electromagnetic fields. Science, 2006, vol. 312, pp. 1780–1782.
  4. Dubinov A.E., Mytareva L.A. Maskirovka material'nykh tel metodom volnovogo obtekaniya [Invisible cloaking of material bodies using the wave flow method]. Uspekhi fizicheskikh nauk – Physics-Uspekhi, 2010, vol. 180, no. 5. pp. 475–501. (In Russian).
  5. Alekseev G.V. Upravlenie granichnym impedansom v dvumernoi zadache maskirovki material'nykh tel metodom volnovogo obtekaniya [Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method]. Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki – Computational Mathematics and Mathematical Physics, 2013, vol. 53, no. 12, pp. 2044–2061. (In Russian).
  6. Alekseev G.V. Cloaking via impedance boundary condition for the 2-D Helmholtz equation. Applicable Analysis, 2014, vol. 93, iss. 2. DOI: 10.1080/00036811.2013.768340.
  7. Galishnikova T.N., Il'inskii A.S. Chislennye metody v zadachakh difraktsii [Numerical me­thods in diffraction problems]. Moscow, MSU Publ., 1987. 208 p.
  8. Benevol'skij S.S., Soppa M.S. Obratnaya zadacha elektromagnitnogo rasseyaniya pri zadannoi fazovoi kharakteristike [Inverse electromagnetic scattering problem with the given phase function]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii – Proceedings of the Russian higher school Academy of sciences, 2014, no. 1 (22), pp. 7–15.
  9. Soppa M.S. Ispol'zovanie sootnoshenii dvoistvennosti dlya E- i H-polyarizatsii v obratnykh zadachakh rasseyaniya na impedansnykh poverkhnostyakh [The use of duality relations for E- and H-polarisations in inverse problems of scattering on impedance surfaces]. Sibirskii zhurnal industrial'noi matematiki – Journal of Applied and Industrial Mathematics, 2004, vol. 7, no. 2, pp. 111–116. (In Russian).
  10. Soppa M.S. Mathematical modeling of microwave diagnostics of impedance surfaces with an unknown phase of the reflected signal. Applied Mechanics and Technical Physics, 2008, vol. 49, no. 4 (290), pp. 146–151.
  11. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for sol­ving of ill-posed problems]. Moscow, Nauka Publ., 1979. 288 p.
For citation:

Soppa M.S. Chislennoe reshenie zadach maskirovki iekvivalentnosti rasseivatelei s uchetom smeny polyarizatsii zondiruyushchego signala [Numerical solution of masking and skatterer equivalence problems taking into account the change of polarization of the probe signal]. Doklady Aka­demii nauk vysshei shkoly Rossiiskoi Federatsii Proceedings of the Russian Higher School Academy of Sciences, 2019, no. 3 (44), pp. 7–17. DOI: 10.17212/1727-2769-2019-3-7-17.

Views: 1496