Доклады АН ВШ РФ

ДОКЛАДЫ АКАДЕМИИ НАУК
ВЫСШЕЙ ШКОЛЫ РОССИЙСКОЙ ФЕДЕРАЦИИ

Print ISSN: 1727-2769    Online ISSN: 2658-3747
English | Русский

Последний выпуск
№4(65) октябрь - декабрь 2024

Mathematical models of radio wave propagation in heterogeneous environments for wireless networks. Review. Part 2. Mathematical models of radio wave propagation in forests

Выпуск № 4 (65) октябрь - декабрь 2024
Авторы:

Popov Valentin Ivanovich
DOI: http://dx.doi.org/10.17212/1727-2769-2024-4-26-47
Аннотация

The paper proposes a classification of mathematical models of radio wave propagation (RWP) in forests in a wide frequency range, which summarizes the results of the works of the author and numerous researchers on the effective complex dielectric constant of forests, effective operating and linear attenuation coefficients, radio path losses, effective differential absorption cross sections and scattering, as well as the specific effective area of backscattering by forest vegetation. The rather complex problem of the influence of forests on the propagation of radio waves of various ranges is still extremely relevant today due to the widespread use of mobile and space radio communication systems, as well as solving the problems of radio monitoring of the earth's surface and radio introscopy of objects in forests.


Ключевые слова: propagation of radio waves in forests, mathematical models, effective complex dielectric constant of forests, effective attenuation coefficient, radio path losses, effective differential absorption and dispersion cross sections, effective backscattering areas of forest vegetations

Список литературы
  1. Popov V.I. Rasprostranenie radiovoln v lesakh [Propagation of radio waves in forests]. Research report No. 3566/3731. Lviv Polytechnic Institute, Department of Theoretical Radio Engineering and Automatic Telecommunications. Lviv, 1981/1983. 120 p.
  2. Popov V. UHF radio wave propagation through woodlands in cellular mobile communication systems. The 44th International Scientific Conference at Riga Technical University, October 11–13, Riga, Latvia, 2003, pp. 1–12.
  3. Popov V. Mathematic model of VHF wave propagation in woodlands. The 48th International Scientific Conference at Riga Technical University, October, Riga, Latvia, 2007.
  4. Popov V.I. Osnovy sotovoi svyazi standarta GSM [Basics of GSM cellular communication]. Moscow, Eko-Trendz Publ., 2005. 296 p.
  5. Popov V.I. Rasprostranenie radiovoln v lesakh [Propagation of radio waves in forests]. Riga, RTU Publ., 2011. 548 p.
  6. Cavalcante G.P.S., Giarola A.J. Optimization of radio communication in media with three layers. IEEE Transactions on Antennas and Propagation, 1983, vol. 31 (1), pp. 141–145.
  7. Dunn J.M. Lateral wave propagation in a three-layered medium. Radio Science, 1986, vol. 21 (5), pp. 787–796.
  8. Cavalcante G.P.S., Rogers D.A., Giardola A.J. Analysis of the electromagnetic wave propagation in multilayered media using dyadic Green’s function. Radio Science, 1982, vol. 17 (3), pp. 503–508.
  9. Cavalcante G.P.S., Rogers D.A., Giardola A.J. Radio loss in forests using a model with four layered media. Radio Science, 1983, vol. 18, pp. 691–695.
  10. Lian H.X. UHF lateral wave loss in forests modeled by four-layered media. Acta Electronica Sinica, 1986, vol. 14 (5), pp. 12–20.
  11. Lian H.X., Lewin L. UHF radio loss in forest modeled by four layered media with two anisotropic slabs. 1986 Antennas and Propagation Society International Symposium, Philadelphia, PA, 1986, pp. 217–221.
  12. Li L.-W., Yeo T.-S., Kooi P.-Sh., Leong M.-S. Radio wave propagation along mixed paths through a four-layered model of rain forest: an analytic approach. IEEE Transaction on Antennas and Propagation, 1998, vol. 46 (7), pp. 1098–1111.
  13. Kane Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966, vol. 14 (3), рр. 302–307.
  14. Taflove A., Brodwin M.E. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Transactions on Microwave Theory and Techniques, 1975, vol. 23 (8), рр. 623–630.
  15. Leontovich M.A., Fok V.A. Reshenie zadachi o rasprostranenii elektromagnitnykh voln vdol' poverkhnosti zemli po metodu parabolicheskogo uravneniya [Solution of the problem of electromagnetic wave propagation along the earth's surface using the parabolic equation method]. Issledovaniya po rasprostraneniyu radiovoln [Research on radio wave propagation]. Moscow, AN SSSR Publ., 1948, iss. 2, pp. 13–39.
  16. Souza J.F. de, Magno F.N.B., Valente Z.A., Costa J.C., Cavalcante G.P.S. Mobile radio propagation along mixed paths in forest environment using parabolic equation. Microwave and Optical Technology Letters, 2009, vol. 51 (4), pp. 1133–1136.
  17. Zelley A., Constantinou C.C. A 3D parabolic equation with non- reflecting boundary conditions. Progress in Electromagnetics Research Symposium (PIERS 1997): Proceedings, Boston, 1997, p. 288.
  18. Mias C., Constantinou С. Modeling of plane wave transmission through a periodic array of cylinders with the parabolic equation method. Microwave and Optical Technology Letters, 1998, vol. 18 (1), pp. 78–84.
  19. Levy M.F., Zaporozhets A.A. Target scattering calculations with the parabolic equation method. The Journal of the Acoustical Society of America, 1998, vol. 103 (2), pp. 735–741.
  20. Levy M. Parabolic equation methods for electromagnetic wave propagation. London, Institution of Electrical Engineers, 2000. 336 p.
  21. Arshad K., Katsriku F., Lasebae A. Radiowave VHF propagation modelling in forest using finite elements. 2006 2nd International Conference on Information & Communication Technologies, Damascus, Syria. IEEE, 2006, pp. 2146–2149.
  22. Kalinin A.I., Cherenkova E.L. Rasprostranenie radiovoln i rabota radiolinii [Propagation of radio waves and operation of radio lines]. Moscow, Svyaz' Publ., 1971. 439 p.
  23. Holm P., Lundborg B., Waern A. Parabolic equation technique in vegetation and urban environment. Report FOI-R-1050-SE. Stockholm, Swedish Defence Research Agency, 2003.
  24. Cavalcante G.P.S., Sanches M.A.R., Oliveira R.A.N. Mobile radio propagation along mixed paths in forest environment. 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 1999, vol. 1, pp. 320–324.
  25. Tamir T. Radio wave propagation along mixed paths in forest environments. IEEE Transactions on Antennas and Propagation, 1977, vol. 25 (4), pp. 471–477.
  26. Keller J.B. Geometrical theory of diffraction. Journal of the Optical Society of America, 1962, vol. 52 (2), pp. 116–130.
  27. James G.L. Geometrical theory of diffraction for electromagnetic waves. London, UK, P. Peregrinus, 1986. 293 p.
  28. Kumar P.B. Sunil, Ranganath G.S. Geometrical theory of diffraction – a historical perspective. Current Science, 1991, vol. 61 (1), pp. 22–27.
  29. Borovikov V.A., Kinber B.Ye. Geometrical theory of diffraction. London, UK, Institute of Electrical Engineers, 1994. 390 p.
  30. McNamara D.A., Pistorius C.W.I., Malherbe J.A.G. Introduction to the uniform geometrical theory of diffraction. Norwood, MA, Artech House, 1990. ISBN 0-89006-301-X.
  31. Matschek R., Linot B., Sizun H. Model for wave propagation in presence of vegetation based on the UTD associating transmitted and lateral waves. IEE National Conference on Antennas and Propagation, York, UK, 1999, pp. 120–123.
  32. Shukla A.K., Seville A., Ndzi D., Richter J., Eden D. Description of a generic vegetation attenuation model for 1-60GHz. COST-Action 280 “Propagation Impairment Mitigation for Millimetre Wave Radio Systems”, 1st International Workshop, Malvern, UK, 2002.
  33. Whitteker J.H. Physical optics and field-strength predictions for wireless systems. IEEE Journal on Selected Areas in Communications, 2002, vol. 20 (3), pp. 515–522.
  34. Wang F. Physics-based modeling of wave propagation for terrestrial and space communications. A diss. of Dr. of Philosophy (Electrical Engineering). – University of Michigan, 2006.
  35. Popov V.I. Tekhnicheskaya elektrodinamika. Konspekt lektsii. (Matematicheskaya model' rasseyaniya radiovoln na lesnykh massivakh dlya sistem mobil'noi svyazi (v priblizhenii odnokratnogo rasseyaniya)) [Technical Electrodynamics. Lecture Notes. Mathematical model of radio wave scattering on forests for mobile communication systems (singlefold scattering approximation)]. Riga, RTU Publ., 2009. (E-version).
  36. Mel'nikov Yu.A. Radiolokatsionnye metody issledovaniya Zemli [Radar methods of Earth research]. Moscow, Sovetskoe radio Publ., 1980. 264 p.
  37. Popov V.I. Mathematical model for radiowave propagation in sparse forests: Rytov approximation. Automatic Control and Computer Science, 2009, vol. 43 (2), pp. 104–108.
  38. Ishimaru A. Wave propagation and scattering in random media. In 2 vol. New York, Academic Press, 1978 (Russ. ed.: Isimaru A. Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh: v 2 t. Moscow, Mir Publ., 1981).
  39. Magazinnikova A.L. Statisticheskie metody rascheta UKV polei v lesnykh raionakh. Diss. kand. fiz.-mat. nauk [Statistical methods for calculating VHF fields in forest areas. PhD phys. and math. sci. diss.]. Tomsk, TSU Publ., 1998. 130 p.
  40. Chukhlantsev A.A. SVCh radiometriya rastitel'nykh pokrovov. Diss. dokt. fiz.-mat. nauk [Microwave radiometry of plant covers. Dr phys. and math. sci. diss.]. Moscow, IRE Publ., 2004. 196 p.
  41. Fernandes T.R., Cladeirinha R.F.S., Al-Nuaimi M.O., Richter J.H. A discrete RET model for millimetre-wave propagation in isolated tree formations. IEICE Transactions on Communications, 2005, vol. E88-B (6), рр. 2411–2418.
  42. Fernandes T.R., Cladeirinha R.F.S., Al-Nuaimi M.O., Richter J.H. Modelling radiowave propagation through vegetation media: a comparison between RET and dRET models. The Second European Conference on Antennas and Propagation, EuCAP 2007, Edinburgh, UK, 2007.
  43. Tamasanis D. Application of volumetric multi-scattering approximations of foliage media. Interim Report RL-TR-91-433. Arcon Corporation, 1991. 37 p.
  44. Papa R.J., Tamasanis D.T. A model for bistatic scattering of electromagnetic waves from foliage covered rough terrain. NATO Workshop: Target and Cluster Scattering and their Effects on Military Radar Performance, 6–10 May, 1991, pp. 4.1–4.7.
  45. Blankenship G.L. Stochastic modeling of em scattering from foliage. Rep. RADC-TR-89 22. Rome Air Development Center, 1989. AD A213118.
  46. Tamasanis D. Effective dielectric constants of foliage media. Rep. RADCTR-90-157. Rome Air Development Center, 1990. AD A226296.
  47. VanBeek L.K.H. Dielectric behavior of heterogeneous systems. Progress in Dielectrics. Vol. 7. Cleveland, OH, CRC Press/Chemical Rubber Co., 1967.
  48. Didascalou D., Younis M., Wiesbeck W. Millimeter-wave scattering and penetration in isolated vegetation structures. IEEE Transactions on Geoscience and Remote Sensing, 2000, vol. 38 (5), рр. 2106–2113.
  49. Wang F., Sarabandi K. A physics-based statistical model for wave propagation through foliage. IEEE Transactions on Antennas and Propagation, 2007, vol. 55 (3), рр. 958–968.
  50. Chizhik D., Ling J. Propagation over clutter: physical stochastic model. IEEE Transactions on Antennas and Propagation, 2008, vol. 56 (4), pp. 1071–1077.
  51. Blaunstein N., Censor D., Katz D. Radio propagation in rural residential areas with vegetation. Progress in Electromagnetics Research, 2003, vol. 40, pp. 131–153.
  52. Lin Y.-Ch., Sarabandi K. A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees. IEEE Transactions on Geoscience and Remote Sensing, 1999, vol. 37 (1), pp. 440–451.
  53. Lin Y.-Ch., Sarabandi K. Retrieval of forest parameters using a fractal-based coherent scattering model and a genetic algorithm. IEEE Transactions on Geoscience and Remote Sensing, 1999, vol. 37 (3), pp. 1415–1424.
  54. Mandelbrot B. The fractal geometry of nature. New York, W.H. Freeman, 1982.
  55. Lin Y.-Ch. A fractal-based coherent scattering and propagation model for forest canopies. Ph.D. diss. Univeristy of Michigan, 1997.
  56. Torrico S.A. Lang R.H. Wave propagation in a vegetated residential area using the distorted born approximation and the Fresnel-Kirchhoff approximation. 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 2009, pp. 1693–1696.
  57. Koh I.S., Wang F., Sarabandi K. Estimation of coherent field attenuation through dense foliage including multiple scattering. IEEE Transactions on Geoscience and Remote Sensing, 2003, vol. 41 (5), pp. 1132–1135.
  58. Kovacs I.Z., Eggers P.C., Olesen K. Radio channel characterization for forest environments in the VHF and UHF frequency bands. IEEE VTS 50th Vehicular Technology Conference, Amsterdam, 1999, pp. 1387–1391.
  59. Meng Y.S., Lee Y.H. Investigation of foliage effect on modern wireless communication systems: a review. Progress in Electromagnetics Research, 2010, vol. 105, pp. 313–332.
  60. Rogers N.C., Seville A., Richter J., Ndzi D., Savage N., Caldeirinha R., Shukla A., Al-Nuaimi M.O., Craig K.H, Vilar E., Austin J. A generic model of 1-60 GHz radio propagation through vegetation. Tech. report. Radiocommunications Agency, May 2002.
  61. Weissberger M.A. An initial critical summary of models for predicting the attenuation of radio waves by foliage: ECAC-TR-81-101. Electromagnetic Compatibility Analysis Center, 1981.
  62. Recommendation ITU-R P.833-2. Attenuation in Vegetation. International Telecommuni­cation Union, 1999.
  63. Recommendation ITU-R P.833-6. Attenuation in Vegetation. International Telecommuni­cation Union, 2007.
  64. Hata M. Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology, 1980, vol. 29 (3), pp. 317–325.
  65. Shahajahan M., Abdulla Hes-Shafi A.Q.M. Analysis of propagation models for WiMAX at 3.5 GHz. Thesis. Blekinge Institute of Technology, 2009. 62 p.
  66. Vogel W.J., Goldhirsh J. Tree attenuation at 869 MHz derived from remotely piloted aircraft measurements. IEEE Transactions on Antennas and Propagation, 1986, vol. 34 (12), pp. 1460–1464.
  67. 67.Goldhirsh J., Vogel W.J., Mobile satellite system fade statistics for shadowing and multipath from roadside trees at UHF and L-band. IEEE Transactions on Antennas and Propagation, 1989, vol. 37 (4), pp. 489–498.
  68. Vogel W.J., Goldhirsh J. Earth-satellite tree attenuation at 20 GHz: foliage effects. Electronics Letters, 1993, vol. 29 (18), pp. 1640–1641.
  69. Cavdar I.H. UHF and L band propagation measurements to obtain log-normal shadowing parameters for mobile satellite link design. IEEE Transactions on Antennas and Propagation, 2003, vol. 51 (1), pp. 126–130.
  70. Chew W.C. Waves and fields in inhomogeneous media. New York, IEEE Press, 1995.
  71. Saatchi S.S., McDonald K.C. Coherent effects in microwave backscattering models for forest canopies. IEEE Transactions on Geoscience and Remote Sensing, 1997, vol. 35 (4), pp. 1032–1044.
  72. Kurum M., O’Neill P. Backscatter measurements over vegetation by ground-based microwave radars. 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 2011.
  73. Lang R.H., Sidhu J.S. Electromagnetic backscattering from a layer of vegetation: a discrete approach. IEEE Transactions on Geoscience and Remote Sensing, 1983, vol. 21 (1), pp. 62–71.
  74. Sarabandi K., Koh I.-S. Effect of canopy-air interface roughness on HF-VHF wave propagation in forest. IEEE Transactions on Antennas and Propagation, 2002, vol. 50 (2), pp. 111–121.
  75. Bellez S., Dahon C., Roussel H. Analysis of the main scattering mechanisms in forested areas: an integral representation approach for monostatic radar configurations. IEEE Transactions on Geoscience and Remote Sensing, 2009, vol. 47 (12), pp. 4153–4166.
  76. Popov V.I. Rasprostranenie radiovoln v lesakh (dlya sistem mobil'noi svyazi). Otchety po NIR, Grant № 04.1249 Akademii nauk Latviiskoi Respubliki [Reports: LZP Grants № 04.1259. Radiowave propagation in forests investigations (for cellular mobile communication systems)]. Riga, RTU, 2004/2008.
  77. Popov V.I. Rasprostranenie radiovoln v lesakh [Radio wave propagation in forests]. Moscow, Goryachaya liniya – Telekom Publ., 2015. 392 p.
For citation:

Popov V.I. Matematicheskie modeli rasprostraneniya radiovoln v geterogennykh sredakh dlya besprovodnykh setei. Obzor. Chast' 2. Matematicheskie modeli rasprostraneniya radiovoln
v lesakh [Mathematical models of radio wave propagation in heterogeneous environments for wireless networks. Review. Part 2. Mathematical models of radio wave propagation in forests]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii = Proceedings of the Russian higher school Academy of sciences, 2024, no. 4 (65), pp. 26–47. DOI: 10.17212/1727-2769-2024-4-
26-47.

Просмотров: 71