Proceedings of the RHSAS

PROCEEDINGS OF THE RUSSIAN HIGHER SCHOOL
ACADEMY OF SCIENCES

Print ISSN: 1727-2769    Online ISSN: 2658-3747
English | Русский

Recent issue
№2(67) April - June 2025

SEMICONDUCTOR BRAGG MICROCAVITY FOR SINGLE PHOTON SOURCES

Issue No 4 (25) October - December 2014
Authors:

Gaisler Aleksei Vladimirovich,
Sheglov Dmitrii Vladimirovich
DOI: http://dx.doi.org/10.17212/1727-2769-2014-4-21-32
Abstract
The realization of efficient single photon sources (SPS) is a crucial requirement for the implementation of quantum cryptography and quantum computing systems. One attractive approach uses single semiconductor quantum dots which are integrated into a resonant cavity light emitting diode. Such a single photon source is a robust, compact solid-state device which does not nees using a pumping laser. Over recent years the main efforts in this field have been concentrated on the development of an optimal SPS design that can provide a high external quantum efficiency and low divergence of the output light. A new design of the semiconductor Bragg microcavity for the InAs quantum dot based single photon source has been developed and realized in this work. The microcavity consists of two semiconductor Bragg mirrors of the p- and n- type doping, an AlGaAs aperture ring and an InAs quantum dot layer between the Bragg mirrors. In comparison with the previous SPS microcavity designs with AlO apertures, this microcavity consists of only semiconductor lattice-matched materials, which provides stable work at cryogenic temperatures and rigidity to temperature cycling. It has been demonstrated that the AlGaAs ring plays a role of both an effective optical and current aperture simultaneously. Moreover, this ring provides effective selective positioning of InAs quantum dots only inside the inner diameter of this ring which is of the order of a few microns. It has been demonstrated that an external quantum efficiency of this type of the SPS microcavity can be as high as 80 %, whereas the output light divergence does not exceed the 0.2 numerical aperture, which provides a high coupling efficiency with standard optical fibers. The low temperature electroluminescence spectra of the created diodes contain sharp lines attributed to the emission of a single InAs quantum dot, which is an experimental proof of a possibility to use this design for implementing effective single photon sources.
Keywords: Single photon source, Bragg microcavity, semiconductor quantum dot

References
  1. Cerf N., Leuchs G., Polzik E., eds. Quantum information with continuous variables of atoms and light. London, Imperial College Press, 2007. 604 p.
  2. Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J. Linear optical quantum computing with photonic qubits. Review of Modern Physics, 2007, vol. 79, iss. 1, pp. 135–174. doi: 10.1103/RevModPhys.79.135
  3. Lvovsky A.I., Hansen H., Aichele T., Benson O., Mlynek J., Schiller S. Quantum state reconstruction of the single-photon Fock state. Physical Review Letters, 2001, vol. 87, iss. 5, art. 050402. doi: 10.1103/PhysRevLett.87.050402
  4. Zavatta A., Viciani S., Bellini M. Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection. Physical Review A, 2001, vol. 70, iss. 5, art. 053821. doi: 10.1103/PhysRevA.70.053821
  5. Michler P., ed. Single quantum dots, fundamentals, applications and new concepts. Berlin, Springer-Verlag, 2003. 348 p.
  6. Michler P., ed. Single semiconductor quantum dots. Berlin, Springer-Verlag, 2009. 389 p.
  7. Lochmann A., Stock E., Schulz O., Hopfer F., Bimberg D., Haisler V.A., Toropov A.I., Bakarov A.K., Kalagin A.K. Electrically driven single quantum dot polarised single photon emitter. Electronics Letters, 2006, vol. 42, iss. 13, pp. 774–775. doi: 10.1049/el:20061076
  8. Lochmann A., Stock E., Toefflinger J.A., Unrau W., Toropov A., Bakarov A., Haisler V., Bimberg D. Electrically pumped, micro-cavity based single photon source driven at 1 GHz. Electronics Letters, 2009, vol. 45, iss. 11, pp. 566–567. doi: 10.1049/el:2009.1056
  9. Münnix M.C., Lochmann A., Bimberg D., Haisler V.A. Modeling highly efficient RCLEDtype quantum-dot-based single photon emitters. IEEE Journal of Quantum Electronics, 2009, vol. 45, iss. 9, pp. 1084–1088. doi: 10.1109/JQE:2009.2020995
  10. Strittmatter A., Schliwa A., Schulze J.-H., Germann T.D., Dreismann A., Hitzemann O., Stock E., Ostapenko I.A., Rodt S., Unrau W., Pohl U.W., Hoffmann A., Bimberg D., Haisler V. Lateral positioning of InGaAs quantum dots using a buried stressor. Applied Physics Letters, 2012, vol. 100, iss. 9, pp. 093111–1–093111–3. doi: 10.1063/1.3691251
  11. Bimberg D., Grundmann M., Ledentsov N. Quantum dot heterostructures. Chichester, John Wiley & Sons, 1999. 328 p.
  12. Bimberg D., ed. Semiconductor nanostructures. Berlin, Heidelberg, Springer-Verlag, 2008. 357 p.
  13. Wang Z.W., ed. Self-assembled quantum dots. New York, Springer Science+Business Media, 2008. 463 p.
  14. Yeh P. Optical waves in layered media. Singapore, John Wiley & Sons, 1991. 406 p.
  15. Bienstman P., Baets R., Vukusic J., Larsson A., Noble M.J., Brunner M., Gulden K., Debernardi P., Fratta L., Bava G.P., Wenzel H., Klein B., Conradi O., Pregla R., Riyopoulos S.A., Seurin J.-F.P., Chuang S.L. Comparison of optical VCSEL models on the simulation of oxide-confined devices. IEEE Journal of Quantum Electronics, 2001, vol. 37, iss. 12, pp. 1618–1631. doi: 10.1109/3.970909
  16. Mitschke F. Fiber optics: physics and technology. Berlin, Springer-Verlag, 2009. 290 p.
  17. Gaisler A.V., Yaroshevich A.S., Derebezov I.A., Kalagin A.K., Bakarov A.K., Toropov A.I., Shcheglov D.V., Gaisler V.A., Latyshev A.V., Aseev A.L. Fine structure of the exciton states in InAs quantum dots. JETP Letters, 2013, vol. 97, iss. 5, pp. 274–278. doi: 10.1134/S0021364013050056
Views: 3030