Аннотация
Рассматривается подход к проблеме построения планов регрессионных экспериментов с позиций недифференцируемой оптимизации. Задача планирования экспериментов для ряда известных критериев оптимальности приводится к некоторой экстремальной проблеме с негладкой критериальной функцией и в общем случае с континуумом ограничений. Такая задача является объектом теории математического программирования с квазидифференцируемыми функциями. Эта теория к настоящему времени достаточно хорошо развита. Представляется целесообразным применение результатов данной теории для планирования регрессионных экспериментов. Это дает возможность установить структуру оптимальных планов и предложить эффективные алгоритмы построения этих планов, используя методы построения экстремального базиса. Структура квазидифференциала позволяет на экстремальном базисе построить вероятностную меру, которую можно трактовать как план эксперимента. Другим эффектом данного подхода является возможность отказаться от сложных функционалов, основанных на информационной матрице Фишера. В работе показана эффективность предлагаемого подхода, которая иллюстрируется на примерах. Результаты носят довольно общий характер и могут быть применены к различным регрессионным моделям как в статической, так и в динамической постановке.
Ключевые слова: регрессия, план эксперимента, критерий оптимальности, квазидифференциал, субградиент, экстремальный базис