Аннотация
Матричные элементы гамильтониана электрон-фотонного взаимодействия между разными стационарными состояниями квазидискретного зонного спектра электронов входят в выражения, которые описывают частотную зависимость электромагнитных проницаемостей, восприимчивостей и проводимости нанокристаллов, а матричные элементы между состояниями квазидискретного и непрерывного спектра ‑ в выражения для вероятностей и токов фотоэмиссии или дифракции электронов на кристаллах, существенно определяя зависимость этих величин от размеров кристаллов и от силы связи электронов в атомах решетки. В работе получены строгие аналитические выражения матричных элементов гамильтониана взаимодействия электрона с электромагнитной волной для модели кристаллической решетки конечной длины N, образованной одинаковыми дельта-барьерами. Эта модель дает достаточно простой зонный спектр энергии электронов: дискретный для состояний ниже вакуумного уровня и непрерывный для состояний выше этого уровня. Метод трансфер матрицы позволяет строго ввести понятие квазиимпульса, но обратное пространство нанокристалла становится существенно неоднородным – стационарным и резонансным состояниям разных разрешенных зон соответствуют разные не эквидистантные точки этого пространства в основной зоне Бриллюэна. Модель приводит к не очень сложным аналитическим выражениям для матричных элементов, которые допускают качественный и числовой анализ в разных важных предельных случаях, и позволяет произвести быстрые числовые расчеты до очень больших N. Выделены вклады областей внутри и вне решетки малого кристалла. В дипольном приближении проведены числовые расчеты матричных элементов для переходов между стационарными состояниями разных точек зоны Бриллюэна с энергией ниже вакуумного уровня и по разные стороны от этого уровня. Результаты сильно зависят от силы связи электронов в элементарных ячейках, от длины решетки N, от степени влияния трансляционной и зеркальной симметрии потенциала решетки. Анализируется формирование и степень приближенности правил отбора «закона сохранения квазиимпульса» и «вертикальных переходов» при увеличении длины решетки и связи электронов в элементарных ячейках.
Ключевые слова: амплитуда вероятности перехода, сила осциллятора, решетка дельта-барьеров конечной длины, полином Чебышева второго рода, фотоэмиссия