Abstract
The paper characterizes an information-computation technology for a remote application of modern methods of the hydraulic circuit theory in modeling multi-loop pipeline water and gas supply systems using a standard Internet browser. The goals, problems and calculation methods of flow distribution in hydraulic circuits as well as the principles of this technology implementation are presented. The suggested object-oriented approach to modeling pipeline systems rests on the object-oriented programming style. This style implies that an object has internal properties and methods. A distinctive feature of this approach lies in the principle of separating the objects with a common value from the objects related to the specificity of an object to be modeled. This allows a multiple application of once implemented common methods in different software packages, the development of calculation components without their reprogramming, which eventually accelerates the adoption of these methods for different types of pipeline systems, classes of problems to be solved and application areas. The proposed technology is implemented as a distributed software package that has client-server architecture. This enables developers to timely update the components on the server and provide users with an up-to-date program version without the program reinstallation at workplaces. The principles of the software implementation make it possible to perform calculations anytime, anywhere and for any number of users, provided there is a connection to the global net, the Internet. This application can be used in various areas (energy sector, housing and public utilities, building sector, etc.), activities (design, operation, dispatching control, research and education), and by users of various levels (engineers, postgraduates, students, etc.). The results of the studies of its computational efficiency are presented.
Keywords: Hydraulic circuit, pipeline system, flow distribution, mathematical and computer simulation, software, Internet-calculation, water supply, gassupply
References
1. Politerm: website. (In Russian) Available at: http://www.politerm.com (accessed 08.09.2016)
2. Potok: programmy dlya rascheta sistem otopleniya, kholodosnabzheniya, ventilyatsii [Potok: fast and qualitative calculation of systems of heating, coolings, ventilation]: website. Available at: http://www.potok.ru (accessed 08.09.2016)
3. Intergraph: website. Available at: http://www.intergraph.com (accessed 09.09.2016)
4. Sunrise Systems company: website. Available at: http://www.sunrise-sys.com (accessed 09.09.2016)
5. Bentley: website. Available at: http://www.bentley.com (accessed 09.09.2016)
6. Merenkov A.P., Khasilev V.Ya. Teoriya gidravlicheskikh tsepei [The hydraulic circuit theory]. Moscow, Nauka Publ., 1985. 278 p.
7. Novitskii N.N. et. al., Gamm A.Z., ed. Gidravlicheskie tsepi. Razvitie teorii i prilozheniya [The hydraulic circuits. Development of the theory and application]. Novosibirsk, Nauka Publ., 2000. 273 p.
8. Novitskii N.N., Mikhailovskii E.A. Ob"ektno-orientirovannoe modelirovanie gidravlicheskikh tsepei [Object-oriented simulating of hydraulic circuits]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta – Bulletin of Irkutsk State Technical University, 2012, no. 7, pp. 170–176.
9. Mikhailovsky E.M., Novitsky N.N. A modified nodal pressure method for calculating flow distribution in hydraulic circuits for the case of unconventional closing relations. St. Petersburg Polytechnical University Journal. Physics and Mathematics, 2015, vol. 1, iss. 2, pp. 120–128. Translated from Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Fiziko-matematicheskie nauki, 2015, no. 2, pp. 30–42.
10. Al'tshul' A.D. Gidravlicheskie soprotivleniya [Hydraulic resistance]. 2nd ed. Moscow, Nedra Publ., 1982. 224 p.
11. Shifrinson B.L. Osnovnoi raschet teplovykh setei: teoriya i metody rascheta [Main calculation of thermal networks: theory and methods of calculation]. Moscow, Leningrad, Gosenergoizdat Publ., 1940. 188 p.
12. SNiP 2.04.07–86*. Teplovye seti [Building regulations 2.04.07–86. Thermal networks]. Moscow, Gosstroi Rossii Publ., 1994. 56 p.
13. Manyuk V.I., Kaplinskii Ya.I., Khizh E.B., Manyuk A.I., Il'in V.K. Naladka i ekspluatatsiya vodyanykh teplovykh setei [Adjustment and operation of water thermal networks]. Moscow, Stroiizdat Publ., 1988. 432 p.
14. SNiP 2.04.02–84*. Vodosnabzhenie. Naruzhnye seti i sooruzheniya [Building regulations 2.04.02–84*.Water supply. Pipelines and portable water treatment plants]. Moscow, Ministerstvo regional'nogo razvitiya Publ., 2012. 157 p.
15. Novitskii N.N., Mikhailovskii E.A. Programmno-vychislitel'nyi kompleks "ISIGR" 1.0 [The software "ISIGR" 1.0]. The Certificate on official registration of the computer program. No. 2013619400, 2013. (In Russian, unpublished)
16. Baidachnyi S.S. SilverLight 4: sozdanie nasyshchennykh Web-prilozhenii [SilverLight 4: creation of saturated Web applications]. Moscow, SOLON-Press Publ., 2010. 288 p.
17. Khasilev V.Ya., Merenkov A.P., eds. Metody i algoritmy rascheta teplovykh setei [Methods and algorithms of thermal networks calculation]. Moscow, Energiya Publ., 1978. 176 p.
18. Novitskii N.N. Raschet potokoraspredeleniya v gidravlicheskikh tsepyakh na baze ikh linearizatsii uzlovymi modelyami sekushchikh i khord [Calculation of the flow distribution in hydraulic circuits based on their linearization by nodal models of secants and chords]. Izvestiya Rossiiskoi akademii nauk. Energetika – Thermal Engineering, 2013, no. 6, pp. 56–69. (In Russian)
19. Baranchikova N.I., Epifanov S.P., Zorkal'tsev V.I. Nekanonicheskaya zadacha potokoraspredeleniya s zadannymi naporami i otborami v uzlakh [Uncanonical problem of flow distribution with the set pressures and selections in nodes]. Voda i ekologiya: problemy i resheniya – Water and Ecology: problems and solutions, 2014, no. 2, pp. 31–38.
20. Feizullin R.T. O reshenii nelineinykh algebraicheskikh sistem gidravliki [About the solution of nonlinear algebraic systems of hydraulics]. Sibirskii zhurnal industrial'noi matematiki – Journal of Applied and Industrial Mathematics, 1999, vol. 2, no. 2, pp. 176–184. (In Russian)
21. Krope J., Dobersek D., Goricanec D. Flow pressure analysis of pipe networks with linear theory method. WSEAS/IASME International Conference on Fluid Mechanics, Miami, FL, 18–20 January 2006, pp. 59–62.
22. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes in С: the art of scientific computing. 2nd ed. Cambridge, Cambridge University Press, 1992. 925 p.
23. Pissanetzky S. Sparse matrix technology. London, Orlando, Academic Press, 1984. 321 p. (Russ. ed.: Pissanetski S. Tekhnologiya razrezhennykh matrits. Translated from English. Moscow, Mir Publ., 1988. 410 p.).
24. Williams G.S., Hazen A. Hydraulic tables. New York, John Wiley and Sons, 1905. 63 p.
25. SNiP 2.04.08–87*. Gazosnabzhenie [Building regulations 2.04.08–87*. Gas supply]. Moscow, Gosstroi Rossii Publ., 1995. 91 p.