Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№2(98) April - June 2025

Functional features of designing a vacuum switching unit of synchronous action

Issue No 1 (66) January - March 2017
Authors:

E.V. Prokhorenko
DOI: http://dx.doi.org/10.17212/1814-1196-2017-1-169-178
Abstract
In this work the principles of constructing models of anelectromechanical single-phase synchronous module of avacuum switching unit as a control object and itsstructural characte-ristics under the influence ofexternal factors on the dynamics of the unit arepresented. The construction principles of the controlsystem in the form of distributed and centralizedstructures are analyzed. The vacuum structure of aswitching unit as an object of control is considered basedon original designs of phase modules with a vacuum-arcchute and an electromagnetic drive of direct action in itsstructure. The device phase module allows building on itsbasis systems with various numbers of switched phases andtheir various spatial positions. Functional schemes ofthe automatic system of control by the switching unit ofsynchronous action of the centralized and distributedtypes are studied. A mathematical model of anelectromechanical single-phase system module of anoriginal design is described to set the task ofdistributed control providing synchronization mechanismsof object switching moments and the impacts of externaldisturbances including mechanical wear system.
Keywords: simultaneous vacuum switching unit, phasestructure of the module, phase module module,electromagnetic drive of direct action, centralizedcontrol system, distributed control system, mechanicalwear, synchronous switching

References
1. Prokhorenko E.V., Norboev B.R. Razrabotka i issledovanie matematicheskoi modeli elektromekhanicheskoi sistemy sinkhronnogo vakuumnogo vyklyuchatelya [Design and research of mathematical model of synchronies vacuum circuit-breaker electromechanical system]. Mekhatronika, avtomatizatsiya, upravlenie – Mechatronics, Automation, Control, 2009, no. 12, pp. 25–29. 2. Прохоренко Е..В., Лебедев И.А. Исследование возможности создания вакуумного выключателя для синхронного отключения ненагруженных трансформаторов [Study on the possibility of creating a vacuum switch for simultaneous disconnection of unloaded transformer]. Elektro. Elektrotekhnika, elektroenergetika, elektrotekhnicheskaya promyshlennost' – Elektro. Elektrotekhnika, elektroenergetika, elektrotekhnicheskaya promyshlennost', 2010, no. 3, pp. 40–44. 3. Shevtsov D., Pavluchenko D., Prohorenko E. The basic principles of controlled switching and synchronous vacuum circuit breaker application in local distribution network. Applied Mechanics and Materials, 2015, vol. 698. Electrical Engineering, Energy, Mechanical Engineering – EEM 2014, pp. 743–748. 4. Prokhorenko E.V., Lebedeva I.A., Odokienko S.I. Sinkhronnyi vakuumnyi kommutatsionnyi apparat [Synchronous vacuum switching device]. Patent RF, no. 2432635, 2011. 5. Prokhorenko E.V., Odokienko S.I., Norboev B.R. Vakuumnyi vyklyuchatel' [Vacuum switch]. Patent RF, no. 133969, 2013. 6. Gordon A.V., Slivinskaya A.G. Elektromagnity postoyannogo toka [Direct current solenoids]. Moscow, Energoizdat Publ., 1960. 448 p. 7. Yuan K., Chen S.A. New algorithm for coupled solutions of electric, magnetic, and mechanical system in dynamic simulation of solenoid actuators. IEEE Transactions on Magnetics, 1990, vol. MAG-26, no. 3, pp. 1189–1197. 8. Chalyi A.M. Sozdavaya novye standarty elektrooborudovaniya [Creating new standards of electrical equipment]. Novosti elektrotekhniki – The News of Electrical Engineering, 2006, no. 2. 9. Lafferty J.M., ed. Vacuum arcs: theory and application. New York, Wiley, 1980 (Russ. ed.: Vakuumnye dugi: teoriya i prilozheniya. Translated from English. Moscow, Mir Publ., 1982. 432 p.). 10. Belkin G.S. Primenenie samoupravlyaemykh apparatov (apparatov, obladayushchikh "intellektom") dlya kommutatsii tsepei vysokogo napryazheniya [Smart systems in switching high-voltage circuits]. Elektrotekhnika – Russian Electrical Engineering, 2005, no. 12, pp. 5–9. (In Russian) 11. Ma S., Cai Z., Wang J. Research on synchronous breaking technology of vacuum circuit breaker. 23rd International Symposium on Discharges and Electrical Insulation in Vacuum, Bucharest, 2008, vol. 1, pp. 161–164. 12. Horinouchi K., Tsukima M., Tohya N., Inoue T., Sasao H. Synchronous controlled switching by vacuum circuit breaker (VCB) with electromagnetic operation mechanism. Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, 2004, pp. 529–534. 13. Nguyen H.-N., Ohn S.-Y., Chae S.-H., Song D.H., Lee I. Optimizing weighted kernel function for support vector machine by genetic algorithm. MICAI 2006: Advances in Artificial Intelligence. Lecture Notes in Computer Science. Berlin, Heidelberg, Springer, 2006, vol. 4293, pp. 583–592. 14. Controlled switching of HVAC circuit-breakers. Guide for application lines, reactors, capacitors, transformers. CIGRE WG 13.07. Electra, 1999, no. 183, pp. 43–73, 1999, no. 185, pp. 37–57. 15. Controlled switching of HVAC circuit-breakers. Planning, specification and testing of controlled switching systems. CIGRE WG 13.07. Electra, 2001, no. 197, p. 23. 16. Controlled switching of HVAC circuit-breakers. Benefits of controlled. CIGRE WG A3.07. Electra, 2004, no. 217, p. 37. 17. Controlled switching of HVAC circuit-breakers. Guidance for further application including unloaded transformer switching, load and fault interruption and circuit-breaker uprating. CIGRE WG A3.07. Technical Brochure, 263, 2004. 55 p. 18. Fang C.-E., Zhou C.-M., Zou J.-Y. Statistical characteristic analysis and self-adaptation control of synchronous circuit breaker. High Voltage Apparatus, 2006, vol. 42 (3), pp. 183–185. 19. Kohyama H., Wada K., Ito H., Hidaka M., Billings S., Sugiyama T., Yamamoto H. Development of 550 kV and 362 kV synchronous switching gas circuit breakers. 2001 IEEE/PES Transmission and Distribution Conference and Exposition, Atlanta, Georgia, 2001, vol. 2, pp. 597–602.
Views: 3012