Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№2(98) April - June 2025

Application of nanofibrous carbon for obtaining finely dispersed titanium carbide

Issue No 4 (69) October - December 2017
Authors:

Krutskii Yury L.,
Lozhkina Elena A.,
Maximovskiy Eugene A.,
Balagansky Igor A.,
Popov Maxim V.,
Netskina Olga V.,
Tyurin Andrey G.,
Kvashina Tatiana S.
DOI: http://dx.doi.org/10.17212/1814-1196-2017-4-179-191
Abstract

The paper describes the results of a study of the synthesis of a highly dispersed titanium carbide powder and its characteristics. Titanium carbide was obtained by carbothermal reduction of titanium dioxide by carbon nanofibers (CNFs) in a resistance furnace with a graphite heater. The reaction products were studied by X-ray phase analysis and elemental analysis. The presence of titanium carbide in the samples was established by X-ray phase analysis. The content of titanium and impurities was found by the X-ray spectral fluorescence method, total carbon was found by burning the sample in an oxygen flow with the sunsequent determination of CO2. The shape and size of the particles were determined by scanning electron microscopy with the use of the local energy dispersive X-ray microanalysis, which allowed determining the primary presence of titanium and carbon. The specific surface of the samples was measured by the method of low-temperature nitrogen adsorption (BET). The density of the samples was found. Thermo-oxidative stability was studied by simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC). The material obtained under optimal conditions is only one phase - titanium carbide. Powder particles are primarily aggregated. The average particle size and aggregates is 12.8-14.1 μm with a wide range of size distribution. The specific surface of the samples is 5.0-5.6 m2 / g. The oxidation of titanium carbide begins at a temperature of 450 °C and practically stops at 1100 °C. The optimal conditions for the synthesis of titanium carbide with the use of CNFs as a reducing agent and carbidizer include the mass ratio of TiO2 / C by stoichiometry to titanium carbide and the process carried out in a slightly reducing atmosphere (mixture of N2 + CO) at a temperature of 2000-2100 °C


Keywords: fine-dispersed powder, titanium carbide, titanium oxide, carbon nanofibers, CNFs, carbothermal reduction, properties, morphology, range of dispersion

References

1. Kosolapova T.Ya., ed. Svoistva, poluchenie i primenenietugoplavkikhsoedinenii:spravochnik [Properties, synthesis and application of refractory materials]. Moscow, Metallurgiya Publ., 1986. 928 p.



2. Kiparisov S.S., Levinskii Yu.V., Petrov A.P. Karbidtitana: poluchenie, svoistva, primenenie[Titanium carbide: synthesis, properties, application]. Moscow, Metallurgiya Publ., 1987. 216 p.



3. Kul'kov S.N., Gnyusov S.F. Karbidostalinaosnovekarbidovtitana i vol'frama[Carbidesteelsbasedontitaniumandtungstencarbides]. Tomsk, NTL Publ., 2006. 240 p.



4. Gnyusov S.F., Tarasov S.Yu.The microstructural aspects of abrasive wear resistance in composite electron beam clad coatings.Applied Surface Science, 2014,vol. 293,pp. 318–325.doi: doi.org/10.1016/j.apsusc.2013.12.161.



5. Abderrazak H., Schoenstein F., Abdellaoui M., Jouini N.Spark plasma sintering consolidation of nanostructured TiC prepared by mechanical alloying.International Journal of Refractory Metals and Hard Materials, 2011,vol. 29,pp. 170–176. doi: 10.1016/j.ijrmhm.2011.10.003.



6. Rahaei M.B., Yazdanirad R., Kazemzadeh A.,Ebadzadeh T.Mechanochemical synthesis of nanoTiC powder by mechanical milling of titanium and graphite powders.Powder Technology, 2012,vol. 217,pp. 369–376. doi: doi.org/10.1016/j.powtec.2011.10.050.



7. Won H.I., Nersisyan H., Won C.W., Lee H.H.Simple synthesis of nano-sized refractory metal carbides by combustion process.Journal of Materials Science, 2011,vol. 6,pp. 6000–6006. doi: 10.1007/s110853-011-5562-0.



8. Ebrahimi-Kahrizsangi R., Alimardani M., Torabi O. Investigation on mechanochemical behavior of the TiO2-Mg-C system reactive mixtures in the synthesis of titanium carbide.International Journal of Refractory Metals and Hard Materials, 2015,vol. 52,pp. 90–97. doi: doi.org/10.1016/ j.ijrmhm.2015.05.008.



9. Leconte Y., Maskrot H.,Combemale L., Herlin-Boime N., Reynaud C. Application of the laser pyrolysis to the synthesis of SiC, TiC andZrC pre-ceramics nanopowders.Journal of Analytical and Applied Pyrolysis, 2007,vol. 79,pp. 465–470. doi: 10.1016/j.jaap.2006.11.009.



10. Lin H., Tao B., Xiong J., Li Q.Using a cobalt activator to synthesize titanium carbide nanopowders.International Journal of Refractory Metals and Hard Materials, 2013,vol. 41,pp. 363–365. doi: doi.org/10.1016/ j.ijrmhm.2013.05.010.



11. Eick B.M., Youngblood J.P. Carbothermal reduction of metal-oxide powders by synthetic pitch to carbide and nitride ceramics.Journal ofMaterials Science, 2009,vol. 44,pp. 1159–1171. doi: 10.1007/s10853-009-3249-6.



12. Kieffer R., Benesovsky F. Tverdyematerialy[Hard materials]. Moscow, Metallurgiya Publ., 1968. 384 p. (In Russian).



13. Kuvshinov G.G., Mogilnykh Yu.L., Kuvshinov D.G., Yermakov D.Yu., Yermakova M.A., Salanov A.N., Rudina N.A.Mechanism of porous filamentous carbon granule formation on catalytic hydrocarbon decomposition.Carbon, 1999,vol. 37,pp. 1239–1246.



14. Krutskii Yu.L., Bannov A.G., Sokolov V.V., Dyukova K.D., Shinkarev V.V., Ukhina A.V., Maksimovskii E.A., Pichugin A.Yu., Solovyev E.A., Krutskaya T.M., Kuvshinov G.G.Synthesis of highly dispersed boron carbide from nanofibrous carbon.Nanotechnologies in Russia, 2013,vol. 8,pp. 191–198. doi: 10.1134/S1995078013020109.



15. Samsonov G.V., ed. Fiziko-khimicheskiesvoistvaokislov: spravochnik[Physico-chemical properties of oxides. Handbook].Мoscow, Мetallurgiya Publ., 1978. 472 p.



16. Shevtsova L.I. Struktura i mekhanicheskiesvoistvaintermetallida Ni3Al, poluchennogopotekhnologiiiskrovogoplazmennogospekaniyamekhanicheskiaktivirovannoiporoshkovoismesi"Ni-Al"[Structure and mechanical properties of the Ni3Alintermetallic, fabricated by spark plasma sintering of mechanically activated "Ni-Al" powder mixtures].Obrabotkametallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science,2014,no. 3 (64),pp. 21–27.

For citation:

Krutskii Yu.L., Lozhkina E.A., Maksimovskii E.A., Balaganskii I.A., Popov M.V., Netski-
na O.V., Tyurin A.G., Kvashina T.S. Primenenie nanovoloknistogo ugleroda dlya polucheniya vysokodispersnogo karbida titana [Application of nanofibrous carbon for obtaining finely dispersed titanium carbide]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2017, no. 4 (69), pp. 179–191. doi: 10.17212/1814-1196-2017-4-179-191.

 

Views: 3626