An integrated tetradic approach to the simulation and analysis of complex system configurations which is based on a logical representation of an operation sequence, f actions necessary for the assessment and analysis of situations, a formal technique of goal-setting, the interference of deviations of complex system indicators, formation as well as a choice and output of managerial decisions is described. The structure of a complex system configuration based on the Petri net systems engineering including four graphs is defined, namely goals and indicators of the balanced scorecard, managerial decisions and operations of a complex system. A complex Petri net displaying a common information space for administrative processes in a complex system on the basis of a balanced scorecard is constructed by means of composition operations. A formal description of configuration model graphs including the justification of Petri nets types is provided. The logic of their interaction is also described. A model of a balanced scorecard based on the colored Petri net including "horizontal" and "vertical" structures is proposed. This model makes it possible to model dynamics of goal achievement and change of indicators of the balanced scorecard. A conceptual structure of a complex system configuration in the form of a tetradic model is constructed on the basis of composition and the developed models of an operation graph of a complex system on the basis of a classical Petri net, a goal graph of a balanced scorecard on the basis of an acyclic Petri net, a graph of indicators on the basis of the "weighted" Petri net and a graph of managerial decisions on the basis of a classical Petri net. A conceptual solution making it possible to simulate system configurations of strategic control of complex systems on the basis of a balanced system of indicators and a tetradic approach with the use of the Petri net mechanism is proposed.
1. Mintzberg H., Ahlstrand B., Lampel J. Strategy safari: a guided tour through the wilds of strategic management, London : Prentice Hall, 1998 (Russ. ed.: Mintsberg G., Al'strend B., Lempel Dzh. Shkoly strategii. St. Petersburg, Piter Publ., 2000. 336 p.).
2. Muradyan I.A., Yuditskii S.A. Metod analiza konfiguratsii organizatsionnykh sistem na setyakh Petri [Method for analyzing configurations of organizational systems on Petri nets]. Upravlenie bol'shimi sistemami – Large-Scale Systems Control, 2007, iss. 16, pp. 163–170.
3. Yuditskii S.A., Radchenko E.G. Algebra potokosobytii i seti Petri – yazyk potokovogo modelirovaniya mnogoagentnykh ierarkhicheskikh sistem [Algebra of flow events and Petri nets – the language of streaming modeling of multi-agent hierarchical systems]. Pribory i sistemy. Upravlenie, kontrol', diagnostika – Instruments and Systems: Monitoring, Control, and Diagnostics, 2004, no. 9, pp. 61–66.
4. Vladislavlev P.N., Muradyan I.A., Yuditskii S.A. Vzaimodeistvie tselevoi i operatsionnoi dinamicheskikh modelei slozhnykh protsessov [Objective and operational dynamic models of complex processes: their interaction]. Avtomatika i telemekhanika – Automation and Remote Control, 2005, no. 11, pp. 126–134. (In Russian).
5. Yuditskii S.A., Muradyan I.A., Zheltova L.V. Analiz slabostrukturirovannykh problemnykh situatsii v organizatsionnykh sistemakh s primeneniem nechetkikh kognitivnykh kart [Analysis of weakly structured problem situations in organizational systems using fuzzy cognitive maps ]. Pribory i sistemy. Upravlenie, kontrol', diagnostika – Instruments and Systems: Monitoring, Control, and Diagnostics, 2008, no. 3, pp. С. 54–62.
6. Yuditskii S.A. Grafodinamicheskoe modelirovanie organizatsionno-tekhnicheskikh sistem na osnove triadnykh agentov [Graphodynamic modeling of organizational-technical systems based on triad agents]. Sistemy upravleniya, svyazi i bezopasnosti – Systems of Control, Communication and Security, 2016, no. 3, pp. 258–281.
7. [A triad approach to network-centric control systems modelling]. Upravlenie bol'shimi sistemami 2010, iss. 28, pp. 24–39.
8. Zubova T.N., Mel'nikov B.F. Ispol'zovanie setei Petri dlya modelirovaniya protsessa prinyatiya upravlencheskikh reshenii [Using Petri nets for modeling the process of making managerial decisions]. Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta – Vector of sciences. Togliatti State University, 2011, no. 3 (17), pp. 33–37.
9. Zubova T.N. Possibilitarnaya paradigma kak metodologicheskaya osnova kontseptual'nogo modelirovaniya dolgosrochnogo upravleniya predpriyatiem [The possibilant paradigm as a methodological basis for conceptual modeling of long-term enterprise management]. Evristicheskie algoritmy i raspredelennye vychisleniya – Heuristic Algorithms and Distributed Computing, 2015, no. 3, pp. 88–98.
10. Mel'nikov B.F., Zubova T.N. Matematicheskoe modelirovanie upravleniya organizatsiei po tsennostnym orientiram: metodika postanovki optimizatsionnykh zadach [Mathematical modeling of organization management by value guidelines: a method for setting optimization problems]. International Journal of Open Information Technologies, 2018, vol. 6, no. 2, pp. 9–15.
11. Shevchenko S.Yu., Ivanov A.A. Sistemy otsenochnykh pokazatelei strategicheskogo i operativnogo kontrollinga [Systems of estimated indicators of strategic and operational controlling]. Izvestiya Ural'skogo gosudarstvennogo ekonomicheskogo universiteta – Journal of the Ural State University of Economics 2014, no. 3 (53), pp. С. 25–32.
12. Management tools 2017: an executive’s guide. Boston, MA, Bain & Company, 2017. 68 p.
13. Kaplan R.S., Norton D.P. The balanced scorecard : translating strategy into action. Boston, Harvard Business School Press, 1996 (Russ. ed.: Kaplan R.S., Norton D.P. Sbalansirovannaya sistema pokazatelei: ot strategii k deistviyu. 2nd ed. Moscow, Olimp-Biznes Publ., 2006. 320 p.).
14. Khanova A.A., Urazaliev N.S., Usmanova Z.A. Metod situatsionnogo upravleniya slozhnymi sistemami na osnove sbalansirovannoi sistemy pokazatelei [The method of situational control of complex systems based on the balanced scorecard]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2015, no. 3 (60), pp. 69–82.
15. Coloured petri nets: modelling and validation of concurrent systems. Dordrecht, New York, Springer, 2009. 384 p.
16. Piterson J.L. Petri net theory and the modeling of systems. Englewood Cliffs, Prentice-Hall, 1981 (Russ. ed.: Moscow, Mir Publ., 1984. 264 p.
17. Martynova O.L. Analiz avtomatizirovannykh biznes-protsessov na urovne peredachi dannykh s pomoshch'yu setei Petri [Analysis of automated business processes at the level of data transfer using Petri nets]. Informatsionnye tekhnologii i programmirovanie Moscow, 2004, iss. 1 (10), pt. 1, pp. 27–42.
18. Jensen K. Coloured Petri Nets. Vol. 1–3. Berlin, Springer, 1992–1997.
Khanova A.A., Muntyanova A.A., Averyanova K.I. Modelirovanie konfiguratsii slozhnykh sistem na osnove setei Petri [Simulation of a complex system configuration on the basis of Petri nets]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2018, no. 2 (71), pp. 39–58. doi: 10.17212/1814-1196-2018-2-39-58.