To implement such infrared simulation modeling stands DLP viewers are used. However, they are mostly designed to work in the visible light spectrum. These viewers (optical projectors) can also be used in the near IR due to the curve of spectrum transmission that sharply falls down at the wave length of 2,7 mcm. To provide the possibilities of using them in the distant IR range and to rise their efficiency in the near IR range some modification was fulfilled by replacing the protective glass of the micromirror device onto the transparent glass up to the wave length of 14 mcm (the ZnSe substance was used). A corresponding technology and special equipment have been worked out. Various types of micromirror modulators have been studied and modulators suitable for modification have been selected. As a result stands that are able to work both in the visible and IR spectrum ranges have been created. To illuminate the DMD modulator a thermal radiation source in the corresponding range has been used. Experiments on generating both static objects (various test-objects in the jpg configuration) and dynamic objects (films in the avi format have been conducted). The developed modulators have demonstrated their efficiency as a part of infrared imitation-modeling stands and seem to be promising in designing modern systems of control and dynamic testing of infrared photo receiving devices and systems.
1. Galiantich A.N., Gibin I.S. Zolottsev V.V., Kiselev M.V, Kolesnikov G.V. Eksperimental'nye issledovaniya matrichnykh fotopriemnykh ustroistv infrakrasnogo diapazona dlya sistem obnaruzheniya malorazmernykh ob"ektov [Experimental studies of infrared photodetector arrays for detection of small objects]. Avtometriya – Optoelectronics, Instrumentation and Data Processing, 2012, vol. 48, no. 1, pp. 95–101. (In Russian).
2. Gibin I.S.,Kotenko V,P., Shurman V.L. Test-ob"ekty dlya kontrolya fotopriemnykh ustroistv v infrakrasnoi oblasti spektra [Test-objects for measuring of rhotoreceivers in the infrared spectrum range]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2014, no. 2 (55), pp. 60–66.
3. Gibin I.S., Kolesnikov G.V. Sovremennye ustroistva izmereniya parametrov i kompleksnogo testirovaniya infrakrasnykh FPU i priborov [Modern devices for зarameters measurements and сomplex testing of infrared devices]. Uspekhi prikladnoi fiziki – Advances in Applied Physics, 2014, vol. 2, no. 1, pp. 293–300.
4. Sparkman K., LaVeigne J., Oleson J., Franks G., McHugh S., Lannon J., Solomon S. Performance improvements in large format resistive array (LFRA) infrared scene projectors (IRSP). Proceedings of SPIE, 2008, vol. 6942. doi: 10.1117/12.793171.
5. Cole J.S., Jolly A.C. Hardware-in-the-loop simulation at the U.S. Army Missile Command. Proceedings of SPIE, 1996, vol. 2741, pp. 14–19.
6. James J., LaVeigne J., Oleson J., Matis G., Lannon J., Goodwin S., Huffman A., Solomon S., Bryant P. OASIS. Cryogenically optimized resistive arrays and IRSP subsystems for space-background IR simulation. Proceedings of SPIE, 2007, vol. 6544, p. 654405.
7. Bryant P., Oleson J., James J., McHugh S., Lannon J., Vellenga D., Goodwin S., Huffman A., Solomon S.L., Goldsmith G.C. II. MIRAGE: developments in IRSP systems, RIIC design, emitter fabrication, and performance. Proceedings of SPIE, 2005, vol. 5785, pp. 1–13.
8. Bryant P., James J., Oleson J., McHugh S.W., Solomon S. Focal planes running in reverse: an introduction to resistive emitter-based dynamic IR scene projection. MSSP National Symposium, 2003.
9. Beasley D.B. Technologies for synthetic environments: hardware-in-the-loop testing X. Proceedings of SPIE, 2001, vol. 5785, pp. 68–79.
10. Presnar M.D., Raisanen A.D., Pogorzala D.R., Kerekes J.P., Rice1 A.C. Dynamic scene generation, multimodal sensor design, and target tracking demonstration for hyperspectral/polarimetric performance-driven sensing. Proceedings of SPIE, 2010, vol. 7672, p. 76720T.
11. Gibin I.S., Kolesnikov G.V., Nezhevenko E.S. Analiz skhem generatsii dinamicheskoi stseny v zadachakh testirovaniya teplovizionnykh priborov [Analysis of dynamic scene generation schemes in testing of infrared imaging systems]. Avtometriya – Optoelectronics, Instrumentation and Data Processing, 2011, vol. 47, no. 6, pp. 34–38. (In Russian).
12. Kurt V.I., Voron'ko M.Yu., Vasil'ev D.Yu. [Measurement stand on the base micromirrov matrix for the checking parameters of infrared optoelectronic systems]. Trudy XXIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii po fotoelektronike i priboram nochnogo videniya [Proceedigs of XXIV international science-technical conference on photo-electronics and night vision devices]. Moscow, 2016, pp. 268–270. (In Russian).
13. Gibin I.S., Kozik V.I., Nezhevenko E.S. Eksperimental'noe issledovanie maketa sistemy generatsii dinamicheskoi stseny dlya testirovaniya teplovizionnykh priborov [Experimental study of a model system of dynamic scene generation for testing infrared imaging systems]. Avtometriya – Optoelectronics, Instrumentation and Data Processing, 2013, vol. 49, no. 1, pp. 34–38. (In Russian).
14. DLP5500 DLP ® 0.55 XGA Series 450 DMD. Dallas, Texas, Texas Instruments, 2015. Available at: http://www.ti.com/lit/ds/symlink/dlp5500.pdf (accessed 22.05.2018).
15. DLPA200 DLP ® DMD Micromirror Driver. Dallas, Texas, Texas Instruments, 2015. Available at: http://www.ti.com/lit/ds/dlps015d/dlps015d.pdf (accessed 22.05.2018).
Gibin I.S., Kozik V.I., Nejevenko E.S., Sidorenko V.M., Hatunkin V.V. Mikrozerkal'nyi modulyator dlya infrakrasnykh imitatsionno-modeliruyushchikh stendov [A micro-mirror modulator for infrared simulation modeling stands]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2018, no. 2 (71), pp. 75–84. doi: 10.17212/1814-1196-2018-2-75-84.