Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№2(98) April - June 2025

Algorithms for estimating labour productivity prediction based on regression and dynamic models

Issue No 4 (73) October - December 2018
Authors:

Abdenov Amirza Zh.,
Abdenova Aliya A.,
Mukhanova Ayagoz A.
DOI: http://dx.doi.org/10.17212/1814-1196-2018-4-7-26
Abstract

Gross domestic product is one of the most important indicators of the national accountssystem.It characterizes the final result of productive activity of domestic economic units and measures the value of goods and services produced by these units in the country for a certain period of timefor final use. The paper considers an algorithm for constructing a linear stationary model in terms of the state space for describing behaviour and predicting labour productivity state depending on the capital-labour ratio and labour costs, instead of describing the object given by the three-factor non-linear Cobb-Douglas model. In addition to a general construction of a dynamic model the algorithm includes the description of the procedures in the form of recursive formulae allowing calculation of variance magnitudes for the dynamic noise, the measuring system noise and the initial state of the investigated object behaviour on the basis of statistical time series data related to labour productivity. An example shows that the proposed model provides more efficientprediction estimates of labour productivity values compared with the prediction estimates calculated using a three-factor non-linear regression model. The numerical calculations of the accuracy of prediction estimates were made using an absolute percentage error and the Teil formula for both the three-factor Cobb-Douglas model and the model in the form of the state space. The calculations showed more accurate prediction estimates and more adequate filtering estimates for the model in terms of the state space.


Keywords: Cobb-Douglas model, three-factor model, dynamic model, state space, noise variance, Kalman filter, absolute percentage error, Teil formula

References

1. Maevskii V.V., Kharin Yu.S. Robastnost' regressionnogo prognozirovaniya pri nalichii funktsional'nykh iskazhenii modeli [Robust regressive forecasting under functional distortions in a model] Avtomatika i telemekhanika – Automation and Remote Control, 2012, no. 11, pp. 118–137. (In Russian).



2. Kravtsov Yu.N. Sluchainost', determinirovannost', predskazuemost' [Accident, determinism, predictability]. Uspekhi fizicheskikh nauk – Soviet Physics Uspekhi, 1989, vol. 158, iss. 1, pp. 93–122. (In Russian).



3. Kropotov Yu.F., Ermolaev V.A., Eremenko W.T., Korasev O.E. Determining the number of parameters. Journal of Communications and Electronics, 2010, vol. 55, iss. 1, pp. 52–57.



4. Proskuryakov A.Yu., Belov A.A., Kropotov Yu.A. Algoritm avtomatizirovannykh sistem ekologicheskogo monitoringa promyshlennykh proizvodstv [Algorithm of automated systems for environmental monitoring of industrial production]. Moscow, Berlin, Direct Media Publ., 2015. 121 p.



5. Ermolaev V.A. O metodakh prognozirovaniya vremennykh ryadov i nepreryvnykh protsessov [On the methods of forecasting time series and continuous processes]. Radiotekhnicheskie i telekommunikatsionnye sistemy – Radio and telecommunication systems, 2016, no. 2, pp. 52–63.



6. Buravlev A.I. Trekhfaktornaya proizvodstvennaya model' Kobba-Duglasa [Three-factor production model of Cobb-Douglas]. Ekonomika i upravlenie: problemy, resheniya, 2012, no. 3, pp. 13–19.



7. Belov A.A., Proskuryakov A.Yu. Voprosy otsenivaniya kachestva prognozirovaniya vremennykh ryadov [Issues of assessing the quality of forecasting time series]. Metody i ustroistva peredachi i obrabotki informatsii – Methods and devices of information transmission and processing, 2011, iss. 13, pp. 105–108.



8. Ivanilov Yu.P., Lotov A.V. Matematicheskie modeli v ekonomike [Mathematical models in economics]. Moscow, Nauka Publ., 1979. 304 p.



9. Rossiya v tsifrakh [Russia in numbers]. Moscow, Rosstat Publ., 2009. 525 p.



10. Abdenova G.A. Prognozirovanie znachenii urovnya vremennogo ryada na osnove uravnenii fil'tra Kalmana [Predicting the values of the time series level based on the Kalman filter equations]. Polzunovskii vestnik – Polzunov Bulletin, 2010, no. 2, pp. 4–6.



11. Sinitsyn I.N. Fil'try Kalmana i Pugacheva [Kalman and Pugachev filters]. Moscow, Universitetskaya kniga Publ., Logos Publ., 2006. 640 p.



12. Peredumov V.P. Ob ustoichivosti modelirovaniya na TsVM lineinykh dinamicheskikh sistem [On the stability of modeling on digital computers of linear dynamic systems]. Vestnik Kievskogo politekhnicheskogo institute. Tekhnicheskaya kibernetika [Herald Kiev Polytechnic Institute. Technical cybernetics]. Kiev, Vishcha shkola Publ., 1983, iss. 7, pp. 39–41.



13. Yusupova M.D. Proizvodstvennaya funktsiya Kobba-Duglasa, kak instrument analiza matematicheskikh modelei [The Cobb-Douglas production function, as a tool for analyzing mathematical models]. Izvestiya Chechenskogo gosudarstvennogo pedagogicheskogo universiteta – Proceedings of the Chechen State Pedagogical University, 2017, vol. 17, no. 4 (20), pp. 304–309.



14. Eykhoff P. System identification: parameter and state estimation. London, John Wiley & Sons, 1974. 555 p. (Russ. ed.: Eikhoff P. Osnovy identifikatsii sistem upravleniya: otsenivanie parametrov i sostoyaniya. Translated from English. Moscow, Mir Publ., 1975. 683 p.).



15. Mehra R. Identification and adaptive Kalman filtering. Mechanics, 1971, no. 3, pp. 34–52.



16. Brammer K., Ziffling G. Fil'tr Kalmana–B'yusi: determinirovannoe nablyudenie i stokhasticheskaya fil'tratsiya [Kalman–Bucy Filter: deterministic observation and stochastic filtering]. Moscow, Nauka Publ., 1982.199 p. (In Russian).



17. Kleiner G.B. Ekonomiko-matematicheskoe modelirovanie i ekonomicheskaya teoriya [Economic-mathematical modeling and economic theory]. Ekonomika i matematicheskie metodyEconomics and Mathematical Methods, 2001, vol. 37, no. 3, pp. 3–25.

For citation:

Abdenov A.Zh., Abdenova A.A., Mukhanova А.А. Algoritmy rascheta otsenok predskazanii proizvoditel'nosti truda na osnove regressionnykh i dinamicheskikh modelei [Algorithms for estimating labour productivity prediction based on regression and dynamic models]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universitetaScience bulletin of the Novosibirsk state technical university, 2018, no. 4 (73), pp. . doi: 10.17212/1814-1196-2018-4-7-26.

Views: 2402